Effect of the addition of phytosterols and tocopherols on Streptococcus thermophilus robustness during industrial manufacture and ripening of a functional cheese as evaluated by qPCR and RT-qPCR

The quality of functional food products designed for the prevention of degenerative diseases can be affected by the incorporation of bioactive compounds. In many types of cheese, the performance of starter microorganisms is critical for optimal elaboration and for providing potential probiotic benef...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pega, J.
Otros Autores: Rizzo, S., Pérez, C.D, Rossetti, L., Díaz, G., Ruzal, S.M, Nanni, M., Descalzo, A.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18862caa a22017537a 4500
001 PAPER-15726
003 AR-BaUEN
005 20230518204630.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84973316306 
024 7 |2 cas  |a alpha tocopherol, 1406-18-4, 1406-70-8, 52225-20-4, 58-95-7, 59-02-9; campesterol, 474-62-4; gamma tocopherol, 7616-22-0; RNA, 63231-63-0; sitosterol, 19044-06-5, 83-46-5; stigmasterol, 83-48-7; tocopherol, 1406-66-2; alpha-Tocopherol; DNA, Bacterial; Phytosterols; RNA, Bacterial 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJFMD 
100 1 |a Pega, J. 
245 1 0 |a Effect of the addition of phytosterols and tocopherols on Streptococcus thermophilus robustness during industrial manufacture and ripening of a functional cheese as evaluated by qPCR and RT-qPCR 
260 |b Elsevier B.V.  |c 2016 
270 1 0 |m Pega, J.; Instituto Tecnología de Alimentos, CIA, INTA. Aristizábal y De La Tradición s/nArgentina; email: juanfpega@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Achilleos, C., Berthier, F., Quantitative PCR for the specific quantification of Lactococcus lactis and Lactobacillus paracasei and its interest for Lactococcus lactis in cheese samples (2013) Food Microbiol., 36 (2), pp. 286-295 
504 |a Agerholm-Larsen, L., Bell, M.L., Grunwald, G.K., Astrup, A., The effect of a probiotic milk product on plasma cholesterol: a meta-analysis of short-term intervention studies (2000) Eur. J. Clin. Nutr., 54 (11), pp. 856-860 
504 |a Aldrete-Tapia, A., Escobar-Ramírez, M.C., Tamplin, M.L., Hernández-Iturriaga, M., High-throughput sequencing of microbial communities in Poro cheese, an artisanal Mexican cheese (2014) Food Microbiol., 44, pp. 136-141 
504 |a Amaretti, A., di Nunzio, M., Pompei, A., Raimondi, S., Rossi, M., Bordoni, A., Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities (2013) Appl. Microbiol. Biotechnol., 97 (2), pp. 809-817 
504 |a Angeles, A.G., Marth, E.H., Growth and activity of lactic-acid bacteria in soymilk. I: growth and acid production (1971) J. Milk Food Technol., 34, pp. 30-36 
504 |a Código Alimentario Argentino (Art. 625). (2012), Ed. De La Canal & Asociados SRL, Buenos Aires, Argentina; Bennama, R., Fernández, M., Ladero, V., Alvarez, M.A., Rechidi-Sidhoum, N., Bensoltane, A., Isolation of an exopolysaccharide-producing Streptococcus thermophilus from Algerian raw cow milk (2012) Eur. Food Res. Technol., 234, pp. 119-125 
504 |a Bruno-Bárcena, J.M., Azcárate-Peril, M.A., Hassan, H.M., Role of antioxidant enzymes in bacterial resistance to organic acids (2010) Appl. Environ. Microbiol., 76 (9), pp. 2747-2753 
504 |a Carraro, L., Maifreni, M., Bartolomeoli, I., Martino, M.E., Novelli, E., Frigo, F., Marino, M., Cardazzo, B., Comparison of culture-dependent and -independent methods for bacterial community monitoring during Montasio cheese manufacturing (2011) Res. Microbiol., 162 (3), pp. 231-239 
504 |a Chumchuere, S., Robinson, R.K., Selection of starter cultures for the fermentation of soya milk (1999) Food Microbiol., 16, pp. 129-137 
504 |a Cocolin, L., Alessandria, V., Dolci, P., Gorra, R., Rantsiou, K., Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation (2013) Int. J. Food Microbiol., 167 (1), pp. 29-43 
504 |a De Pasquale, I., Di Cagno, R., Buchin, S., De Angelis, M., Gobbetti, M., Microbial ecology dynamics reveal a succession in the core microbiota involved in the ripening of pasta filata caciocavallo pugliese cheese (2014) Appl. Environ. Microbiol., 80 (19), pp. 6243-6255 
504 |a Delcenserie, V., Taminiau, B., Delhalle, L., Nezer, C., Doyen, P., Crevecoeur, S., Roussey, D., Daube, G., Microbiota characterization of a Belgian protected designation of origin cheese, Herve cheese, using metagenomic analysis (2014) J. Dairy Sci., 97 (10), pp. 6046-6056 
504 |a Delgado, S., Rachid, C.T., Fernández, E., Rychlik, T., Alegría, A., Peixoto, R.S., Mayo, B., Diversity of thermophilic bacteria in raw, pasteurized and selectively-cultured milk, as assessed by culturing, DGGE and pyrosequencing (2013) Food Microbiol., 36 (1), pp. 103-111 
504 |a Desfossés-Foucault, É., LaPointe, G., Roy, D., Dynamics and rRNA transcriptional activity of lactococci and lactobacilli during Cheddar cheese ripening (2013) Int. J. Food Microbiol., 166 (1), pp. 117-124 
504 |a Di Marzio, L., Centi, C., Cinque, B., Masci, S., Giuliani, M., Arcieri, A., Zicari, L., Cifone, M.G., Effect of the lactic acid bacterium Streptococcus thermophilus on stratum corneum ceramid levels and signs and symptoms of atopic dermatitis patients (2003) Exp. Dermatol., 12 (5), pp. 615-620 
504 |a Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., Grupo InfoStat, FCA, Universidad Nacional de Córdoba (2015), http://www.infostat.com.ar, Argentina. (URL); Dolci, P., De Filippis, F., La Storia, A., Ercolini, D., Cocolin, L., RRNA-based monitoring of the microbiota involved in Fontina PDO cheese production in relation to different stages of cow lactation (2014) Int. J. Food Microbiol., 185, pp. 127-135 
504 |a Falentin, H., Henaff, N., Le Bivic, P., Deutsch, S.M., Parayre, S., Richoux, R., Sohier, D., Postollec, F., Reverse transcription quantitative PCR revealed persistency of thermophilic lactic acid bacteria metabolic activity until the end of the ripening of Emmental cheese (2012) Food Microbiol., 29, pp. 132-140 
504 |a Farnworth, E.R., Mainville, I., Desjardins, M.P., Gardner, N., Fliss, I., Champagne, C., Growth of probiotic bacteria and bifidobacteria in a soy yogurt formulation (2007) Int. J. Food Microbiol., 116, pp. 174-181 
504 |a Folch, J., Lees, M., Stanley, G.H.S., A simple method for the isolation and purification of total lipids from animal tissues (1957) J. Biol. Chem., 226, pp. 497-509 
504 |a Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H., (2000) Fundamentals of Cheese Science, , AN Aspen Publishers Inc., Gaithersburg, Ma., USA 
504 |a Fox, P.F., McSweeney, P.L., Cogan, T.M., Guinee, T.P., (2004) Cheese: Chemistry, Physics and Microbiology: General Aspects, 3rd Ed, 1. , Elsevier Academic, Oxford, United Kingdom 
504 |a García, P.T., Pensel, N.A., Sancho, A.M., Latimori, N.J., Kloster, A.M., Amigone, M.A., Casal, J.J., Beef lipids in relation to animal breed and nutrition in Argentina (2008) Meat Sci., 79, pp. 500-508 
504 |a Gatti, M., Bottari, B., Lazzi, C., Neviani, E., Mucchetti, G., Invited review: microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters (2014) J. Dairy Sci., 2, pp. 573-591 
504 |a Gluck, U., Gebbers, J.O., Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumonia and β haemolytic streptococci) (2003) Am. J. Clin. Nutr., 77 (2), pp. 517-520 
504 |a Hickson, M., D'Souza, A.L., Muthu, N., Rogers, T.R., Want, S., Rajkumar, C., Bulpitt, C.J., Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial (2007) Br. Med. J., 335 (7610), p. 80 
504 |a Food and nutrition board (2000) Dietary Reference Intakes: Vitamin C, Vitamin E, Selenium and Carotenoids, , National Academy Press, Washington DC 
504 |a (2004) ISO 5534/IDF 4:2004: Reference Method for the Determination of the total Solids Content of Cheese and Processed Cheese 
504 |a (2006) ISO 5943/IDF 88:2006: Potentiometric Titration Method for the Determination of the Chloride Content of Cheese and Processed Cheese Products 
504 |a (2008) ISO 3433/IDF 222:2008: Van Gulik Method for the Determination of the Fat Content, as a Mass Fraction, of Cheese 
504 |a Irlinger, F., Mounier, J., Microbial interactions in cheese: implications for cheese quality and safety (2009) Curr. Opin. Biotechnol., 20, pp. 142-148 
504 |a Jany, J.L., Barbier, G., Culture-independent methods for identifying microbial communities in cheese (2008) Food Microbiol., 25, pp. 839-848 
504 |a Karleskind, D., Laye, I., Halpin, E., Morr, C.V., Improving acid production in soy-based yogurt by adding cheese whey proteins and mineral salts (1991) J. Food Sci., 56, pp. 999-1001 
504 |a Lichtenstein, A.H., Wylie-Rosett, J., Diet and lifestyle recommendations revision 2006. A scientific statement from the American Heart Association Nutrition Committee (2006) Circulation, 114, pp. 82-96 
504 |a Martirosyan, D.M., (2011) Introduction to Functional Food Science, , Food Science Publisher 
504 |a Masoud, W., Takamiya, M., Vogensen, F.K., Lillevang, S., Abu Al-Soud, W., Sørensen, S.J., Jakobsen, Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing (2011) Int. Dairy J., 21, pp. 142-148 
504 |a Masoud, W., Vogensen, F.K., Lillevang, S., Abu Al-Soud, W., Sørensen, S.J., Jakobsen, M., The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR (2012) Int. J. Food Microbiol., 153 (1-2), pp. 192-202 
504 |a Monu, E., Blank, G., Holley, R., Zawistowski, J., Phytosterols effects on milk and yogurt microflora (2008) J. Food Sci., 73 (3), pp. M121-M126 
504 |a Mora, D., Arioli, S., Microbial urease in health and disease (2014) PloS One Pathogens, 10 (12) 
504 |a Mora, D., Monnet, C., Parini, C., Guglielmetti, S., Mariani, A., Pintus, P., Molinari, F., Manachini, P.L., Urease biogenesis in Streptococcus thermophilus (2005) Res. Microbiol., 156 (9), pp. 897-903 
504 |a Rondanelli, M., Monteferrario, F., Faliva, M.A., Perna, S., Antoniello, N., Key points for maximum effectiveness and safety for cholesterol-lowering properties of plant sterols and use in the treatment of metabolic syndrome (2013) J. Sci. Food Agric., 93, pp. 2605-2610 
504 |a Rossetti, L., Langman, L., Grigioni, G.M., Biolatto, A., Sancho, A.M., Comerón, E., Descalzo, A.M., Antioxidant status and odor profile in milk from silage or alfalfa-fed cows (2010) Aust. J. Dairy Technol., 65 (1), pp. 3-9 
504 |a Ruggirello, M., Dolci, P., Cocolin, L., Detection and viability of Lactococcus lactis throughout cheese ripening (2014) PLoS One, 9 (12) 
504 |a Saavedra, J.M., Bauman, N.A., Perman, J.A., Yolken, R.H., Oung, I., Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus (1994) Lancet, 344, pp. 1046-1049 
504 |a Shori, A.B., Antioxidant activity and viability of lactic acid bacteria in soybean-yogurt made from cow and camel milk (2013) J. Taibah Univ. Sci., 7, pp. 202-208 
504 |a Sohier, D., Pavan, S., Riou, A., Combrisson, J., Postollec, F., Evolution of microbial analytical methods for dairy industry needs (2014) Front. Microbiol., 5, p. 16 
504 |a Slavin, M., Yu, L.L., A single extraction and HPLC procedure for simultaneous analysis of phytosterols, tocopherols and lutein in soybeans (2012) Food Chem., 135 (4), pp. 2789-2795 
504 |a Stevens, K.A., Jaykus, L.A., Direct detection of bacterial pathogens in representative dairy products using a combined bacterial concentration-PCR approach (2004) J. Appl. Microbiol., 97, pp. 1115-1122 
504 |a van de Bunt, B., Bron, P.A., Sijtsma, L., de Vos, W.M., Hugenholtz, J., Use of non-growing Lactococcus lactis cell suspensions for production of volatile metabolites with direct relevance for flavor formation during dairy fermentations (2014) Microb. Cell Factories, 13, p. 176 
520 3 |a The quality of functional food products designed for the prevention of degenerative diseases can be affected by the incorporation of bioactive compounds. In many types of cheese, the performance of starter microorganisms is critical for optimal elaboration and for providing potential probiotic benefits. Phytosterols are plant lipophilic triterpenes that have been used for the design of functional dairy products because of their ability to lower serum cholesterol levels in humans. However, their effect on the starter culture behavior during cheesemaking has not yet been studied. Here, we followed DNA and RNA kinetics of the bacterium Streptococcus thermophilus, an extensively used dairy starter with probiotic potential, during industrial production of a functional, semi-soft, reduced-fat cheese containing phytosterol esters and alpha-tocopherol as bioactive compounds. For this purpose, real-time quantitative PCR (qPCR) and reverse transcription-qPCR (RT-qPCR) assays were optimized and applied to samples obtained during the manufacture and ripening of functional and control cheeses. An experimental set-up was used to evaluate the detection threshold of free nucleic acids for extraction protocols based on pelleted microorganisms. To our knowledge, this straight-forward approach provides the first experimental evidence indicating that DNA is not a reliable marker of cell integrity, whereas RNA may constitute a more accurate molecular signature to estimate both bacterial viability and metabolic activity. Compositional analysis revealed that the bioactive molecules were effectively incorporated into the cheese matrix, at levels considered optimal to exert their biological action. The starter S. thermophilus was detected by qPCR and RT-qPCR during cheese production at the industrial level, from at least 30 min after its inoculation until 81 days of ripening, supporting the possible role of this species in shaping organoleptic profiles. We also showed for the first time that the addition of phytosterols at functional concentrations, not only did not affect starter performance but also correlated with a significant increase in target DNA and cDNA levels in most of the time points evaluated throughout cheesemaking. Therefore, these findings suggest that the growth and metabolism of S. thermophilus may be enhanced by the incorporation of these biologically active molecules during cheese production, providing important information for the industrial design of novel fermented foods. © 2016 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva 
536 |a Detalles de la financiación: FONARSEC 0004/2010 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva 
536 |a Detalles de la financiación: This work was funded by the INTA-PNAIyAV-1130043 project “Strategies for the development of new food products” and FONARSEC 0004/2010 project “Design of functional dairy products” involving INTA, Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT) and Lácteos Capilla del Señor. 
593 |a Instituto Tecnología de Alimentos, Centro de Investigaciones en Agroindustria, Instituto Nacional de Tecnología Agropecuaria (INTA), Aristizábal y De La Tradición s/n, Hurlingham, Buenos Aires, 1686, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). CABA, Av. Rivadavia 1917, Argentina 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, IQUIBICEN-CONICET, CABA, Argentina 
593 |a INTA-LABINTEX-Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement, Département PERSYST, UMR Qualisud., TA B-95/16, Montpellier, 34398, France 
690 1 0 |a CHEESE 
690 1 0 |a FUNCTIONAL 
690 1 0 |a LAB 
690 1 0 |a PCR 
690 1 0 |a PHYTOSTEROLS 
690 1 0 |a STARTER 
690 1 0 |a ALPHA TOCOPHEROL 
690 1 0 |a CAMPESTEROL 
690 1 0 |a COMPLEMENTARY DNA 
690 1 0 |a GAMMA TOCOPHEROL 
690 1 0 |a MONOUNSATURATED FATTY ACID 
690 1 0 |a PHYTOSTEROL 
690 1 0 |a POLYUNSATURATED FATTY ACID 
690 1 0 |a PROBIOTIC AGENT 
690 1 0 |a RNA 
690 1 0 |a SITOSTEROL 
690 1 0 |a STIGMASTEROL 
690 1 0 |a TOCOPHEROL 
690 1 0 |a ALPHA TOCOPHEROL 
690 1 0 |a BACTERIAL DNA 
690 1 0 |a BACTERIAL RNA 
690 1 0 |a PHYTOSTEROL 
690 1 0 |a ARTICLE 
690 1 0 |a BACTERIAL CELL 
690 1 0 |a BACTERIAL VIABILITY 
690 1 0 |a BACTERIUM DETECTION 
690 1 0 |a CHEESE RIPENING 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a FAT CONTENT 
690 1 0 |a FOOD CONTROL 
690 1 0 |a LIPID COMPOSITION 
690 1 0 |a MILK 
690 1 0 |a NONHUMAN 
690 1 0 |a PASTEURIZATION 
690 1 0 |a QUANTITATIVE ASSAY 
690 1 0 |a REAL TIME POLYMERASE CHAIN REACTION 
690 1 0 |a REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION 
690 1 0 |a RNA ANALYSIS 
690 1 0 |a STREPTOCOCCUS THERMOPHILUS 
690 1 0 |a CHEESE 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a FERMENTATION 
690 1 0 |a GENETICS 
690 1 0 |a METABOLISM 
690 1 0 |a MICROBIAL VIABILITY 
690 1 0 |a MICROBIOLOGY 
690 1 0 |a REAL TIME POLYMERASE CHAIN REACTION 
690 1 0 |a STREPTOCOCCUS THERMOPHILUS 
690 1 0 |a ALPHA-TOCOPHEROL 
690 1 0 |a CHEESE 
690 1 0 |a DNA, BACTERIAL 
690 1 0 |a FERMENTATION 
690 1 0 |a MICROBIAL VIABILITY 
690 1 0 |a PHYTOSTEROLS 
690 1 0 |a PROBIOTICS 
690 1 0 |a REAL-TIME POLYMERASE CHAIN REACTION 
690 1 0 |a RNA, BACTERIAL 
690 1 0 |a STREPTOCOCCUS THERMOPHILUS 
700 1 |a Rizzo, S. 
700 1 |a Pérez, C.D. 
700 1 |a Rossetti, L. 
700 1 |a Díaz, G. 
700 1 |a Ruzal, S.M. 
700 1 |a Nanni, M. 
700 1 |a Descalzo, A.M. 
773 0 |d Elsevier B.V., 2016  |g v. 232  |h pp. 117-125  |p Int. J. Food Microbiol.  |x 01681605  |w (AR-BaUEN)CENRE-5251  |t International Journal of Food Microbiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84973316306&doi=10.1016%2fj.ijfoodmicro.2016.06.003&partnerID=40&md5=78c89ac89b2815a7d8b9e0772fbd2d38  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ijfoodmicro.2016.06.003  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01681605_v232_n_p117_Pega  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681605_v232_n_p117_Pega  |y Registro en la Biblioteca Digital 
961 |a paper_01681605_v232_n_p117_Pega  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 76679