Perfect edge domination: hard and solvable cases
Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by...
Guardado en:
Autores principales: | Lin, M.C., Lozin, V., Moyano, V.A., Szwarcfiter, J.L. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02545330_v264_n1-2_p287_Lin |
Aporte de: |
Ejemplares similares
-
Perfect edge domination: hard and solvable cases
Publicado: (2018) -
Efficient and Perfect domination on circular-arc graphs
por: Lin, M.C., et al. -
An O*(1.1939n) time algorithm for minimum weighted dominating induced matching
por: Lin, M.C., et al. -
NP-completeness results for edge modification problems
por: Burzyn, Pablo, et al.
Publicado: (2006) -
NP-completeness results for edge modification problems
por: Burzyn, P., et al.
Publicado: (2006)