Perfect edge domination: hard and solvable cases

Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lin, M.C., Lozin, V., Moyano, V.A., Szwarcfiter, J.L.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_02545330_v264_n1-2_p287_Lin
Aporte de:
id todo:paper_02545330_v264_n1-2_p287_Lin
record_format dspace
spelling todo:paper_02545330_v264_n1-2_p287_Lin2023-10-03T15:11:35Z Perfect edge domination: hard and solvable cases Lin, M.C. Lozin, V. Moyano, V.A. Szwarcfiter, J.L. Claw-free graphs Complexity dichotomy Cubic graphs NP-completeness Perfect edge domination Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by exactly one edge of E′. The perfect edge dominating problem is to determine a least cardinality perfect edge dominating set of G. For this problem, we describe two NP-completeness proofs, for the classes of claw-free graphs of degree at most 3, and for bounded degree graphs, of maximum degree at most d≥ 3 and large girth. In contrast, we prove that the problem admits an O(n) time solution, for cubic claw-free graphs. In addition, we prove a complexity dichotomy theorem for the perfect edge domination problem, based on the results described in the paper. Finally, we describe a linear time algorithm for finding a minimum weight perfect edge dominating set of a P5-free graph. The algorithm is robust, in the sense that, given an arbitrary graph G, either it computes a minimum weight perfect edge dominating set of G, or it exhibits an induced subgraph of G, isomorphic to a P5. © 2017, Springer Science+Business Media, LLC. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_02545330_v264_n1-2_p287_Lin
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Claw-free graphs
Complexity dichotomy
Cubic graphs
NP-completeness
Perfect edge domination
spellingShingle Claw-free graphs
Complexity dichotomy
Cubic graphs
NP-completeness
Perfect edge domination
Lin, M.C.
Lozin, V.
Moyano, V.A.
Szwarcfiter, J.L.
Perfect edge domination: hard and solvable cases
topic_facet Claw-free graphs
Complexity dichotomy
Cubic graphs
NP-completeness
Perfect edge domination
description Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by exactly one edge of E′. The perfect edge dominating problem is to determine a least cardinality perfect edge dominating set of G. For this problem, we describe two NP-completeness proofs, for the classes of claw-free graphs of degree at most 3, and for bounded degree graphs, of maximum degree at most d≥ 3 and large girth. In contrast, we prove that the problem admits an O(n) time solution, for cubic claw-free graphs. In addition, we prove a complexity dichotomy theorem for the perfect edge domination problem, based on the results described in the paper. Finally, we describe a linear time algorithm for finding a minimum weight perfect edge dominating set of a P5-free graph. The algorithm is robust, in the sense that, given an arbitrary graph G, either it computes a minimum weight perfect edge dominating set of G, or it exhibits an induced subgraph of G, isomorphic to a P5. © 2017, Springer Science+Business Media, LLC.
format JOUR
author Lin, M.C.
Lozin, V.
Moyano, V.A.
Szwarcfiter, J.L.
author_facet Lin, M.C.
Lozin, V.
Moyano, V.A.
Szwarcfiter, J.L.
author_sort Lin, M.C.
title Perfect edge domination: hard and solvable cases
title_short Perfect edge domination: hard and solvable cases
title_full Perfect edge domination: hard and solvable cases
title_fullStr Perfect edge domination: hard and solvable cases
title_full_unstemmed Perfect edge domination: hard and solvable cases
title_sort perfect edge domination: hard and solvable cases
url http://hdl.handle.net/20.500.12110/paper_02545330_v264_n1-2_p287_Lin
work_keys_str_mv AT linmc perfectedgedominationhardandsolvablecases
AT lozinv perfectedgedominationhardandsolvablecases
AT moyanova perfectedgedominationhardandsolvablecases
AT szwarcfiterjl perfectedgedominationhardandsolvablecases
_version_ 1807323766161670144