Universal deformation formulas and braided module algebras

We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guccione, J.A., Guccione, J.J., Valqui, C.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione
Aporte de:
id todo:paper_00218693_v330_n1_p263_Guccione
record_format dspace
spelling todo:paper_00218693_v330_n1_p263_Guccione2023-10-03T14:21:29Z Universal deformation formulas and braided module algebras Guccione, J.A. Guccione, J.J. Valqui, C. Crossed product Deformation Hochschild cohomology Primary Secondary We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Crossed product
Deformation
Hochschild cohomology
Primary
Secondary
spellingShingle Crossed product
Deformation
Hochschild cohomology
Primary
Secondary
Guccione, J.A.
Guccione, J.J.
Valqui, C.
Universal deformation formulas and braided module algebras
topic_facet Crossed product
Deformation
Hochschild cohomology
Primary
Secondary
description We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc.
format JOUR
author Guccione, J.A.
Guccione, J.J.
Valqui, C.
author_facet Guccione, J.A.
Guccione, J.J.
Valqui, C.
author_sort Guccione, J.A.
title Universal deformation formulas and braided module algebras
title_short Universal deformation formulas and braided module algebras
title_full Universal deformation formulas and braided module algebras
title_fullStr Universal deformation formulas and braided module algebras
title_full_unstemmed Universal deformation formulas and braided module algebras
title_sort universal deformation formulas and braided module algebras
url http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione
work_keys_str_mv AT guccioneja universaldeformationformulasandbraidedmodulealgebras
AT guccionejj universaldeformationformulasandbraidedmodulealgebras
AT valquic universaldeformationformulasandbraidedmodulealgebras
_version_ 1807316826742325248