Universal deformation formulas and braided module algebras
We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they a...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione |
Aporte de: |
id |
todo:paper_00218693_v330_n1_p263_Guccione |
---|---|
record_format |
dspace |
spelling |
todo:paper_00218693_v330_n1_p263_Guccione2023-10-03T14:21:29Z Universal deformation formulas and braided module algebras Guccione, J.A. Guccione, J.J. Valqui, C. Crossed product Deformation Hochschild cohomology Primary Secondary We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Crossed product Deformation Hochschild cohomology Primary Secondary |
spellingShingle |
Crossed product Deformation Hochschild cohomology Primary Secondary Guccione, J.A. Guccione, J.J. Valqui, C. Universal deformation formulas and braided module algebras |
topic_facet |
Crossed product Deformation Hochschild cohomology Primary Secondary |
description |
We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc. |
format |
JOUR |
author |
Guccione, J.A. Guccione, J.J. Valqui, C. |
author_facet |
Guccione, J.A. Guccione, J.J. Valqui, C. |
author_sort |
Guccione, J.A. |
title |
Universal deformation formulas and braided module algebras |
title_short |
Universal deformation formulas and braided module algebras |
title_full |
Universal deformation formulas and braided module algebras |
title_fullStr |
Universal deformation formulas and braided module algebras |
title_full_unstemmed |
Universal deformation formulas and braided module algebras |
title_sort |
universal deformation formulas and braided module algebras |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione |
work_keys_str_mv |
AT guccioneja universaldeformationformulasandbraidedmodulealgebras AT guccionejj universaldeformationformulasandbraidedmodulealgebras AT valquic universaldeformationformulasandbraidedmodulealgebras |
_version_ |
1807316826742325248 |