Braided module and comodule algebras, Galois extensions and elements of trace 1

Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Da Rocha, M., Guccione, J.A., Guccione, J.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha
Aporte de:
id todo:paper_00218693_v307_n2_p727_DaRocha
record_format dspace
spelling todo:paper_00218693_v307_n2_p727_DaRocha2023-10-03T14:21:24Z Braided module and comodule algebras, Galois extensions and elements of trace 1 Da Rocha, M. Guccione, J.A. Guccione, J.J. Braided Hopf algebras Crossed products Galois extensions Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Braided Hopf algebras
Crossed products
Galois extensions
spellingShingle Braided Hopf algebras
Crossed products
Galois extensions
Da Rocha, M.
Guccione, J.A.
Guccione, J.J.
Braided module and comodule algebras, Galois extensions and elements of trace 1
topic_facet Braided Hopf algebras
Crossed products
Galois extensions
description Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006.
format JOUR
author Da Rocha, M.
Guccione, J.A.
Guccione, J.J.
author_facet Da Rocha, M.
Guccione, J.A.
Guccione, J.J.
author_sort Da Rocha, M.
title Braided module and comodule algebras, Galois extensions and elements of trace 1
title_short Braided module and comodule algebras, Galois extensions and elements of trace 1
title_full Braided module and comodule algebras, Galois extensions and elements of trace 1
title_fullStr Braided module and comodule algebras, Galois extensions and elements of trace 1
title_full_unstemmed Braided module and comodule algebras, Galois extensions and elements of trace 1
title_sort braided module and comodule algebras, galois extensions and elements of trace 1
url http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha
work_keys_str_mv AT darocham braidedmoduleandcomodulealgebrasgaloisextensionsandelementsoftrace1
AT guccioneja braidedmoduleandcomodulealgebrasgaloisextensionsandelementsoftrace1
AT guccionejj braidedmoduleandcomodulealgebrasgaloisextensionsandelementsoftrace1
_version_ 1807317397848195072