Braided module and comodule algebras, Galois extensions and elements of trace 1
Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided com...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha |
Aporte de: |
id |
todo:paper_00218693_v307_n2_p727_DaRocha |
---|---|
record_format |
dspace |
spelling |
todo:paper_00218693_v307_n2_p727_DaRocha2023-10-03T14:21:24Z Braided module and comodule algebras, Galois extensions and elements of trace 1 Da Rocha, M. Guccione, J.A. Guccione, J.J. Braided Hopf algebras Crossed products Galois extensions Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Braided Hopf algebras Crossed products Galois extensions |
spellingShingle |
Braided Hopf algebras Crossed products Galois extensions Da Rocha, M. Guccione, J.A. Guccione, J.J. Braided module and comodule algebras, Galois extensions and elements of trace 1 |
topic_facet |
Braided Hopf algebras Crossed products Galois extensions |
description |
Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006. |
format |
JOUR |
author |
Da Rocha, M. Guccione, J.A. Guccione, J.J. |
author_facet |
Da Rocha, M. Guccione, J.A. Guccione, J.J. |
author_sort |
Da Rocha, M. |
title |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
title_short |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
title_full |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
title_fullStr |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
title_full_unstemmed |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
title_sort |
braided module and comodule algebras, galois extensions and elements of trace 1 |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha |
work_keys_str_mv |
AT darocham braidedmoduleandcomodulealgebrasgaloisextensionsandelementsoftrace1 AT guccioneja braidedmoduleandcomodulealgebrasgaloisextensionsandelementsoftrace1 AT guccionejj braidedmoduleandcomodulealgebrasgaloisextensionsandelementsoftrace1 |
_version_ |
1807317397848195072 |