Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode

An atomistic model for Cu electrodeposition under nonequilibrium conditions is presented. Cu electrodeposition takes place with a height-dependent deposition rate that accounts for fluctuations in the local [formula presented] ions concentration at the interface, followed by surface diffusion. This...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: De Leon, P.F.J., Albano, E.V., Salvarezza, R.C., Solari, H.G.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2002
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n4_p4_DeLeon
Aporte de:
id paperaa:paper_1063651X_v66_n4_p4_DeLeon
record_format dspace
spelling paperaa:paper_1063651X_v66_n4_p4_DeLeon2023-06-12T16:49:18Z Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode Phys Rev E. 2002;66(4):4 De Leon, P.F.J. Albano, E.V. Salvarezza, R.C. Solari, H.G. Additives Chemical vapor deposition Computer simulation Copper Diffusion Electrodeposition Interfaces (materials) Ions Mass transfer Mathematical models Monolayers Probability Surface roughness Atomistic model Edwards-Wilkinson equation Energy barriers Growth dynamics Surface chemistry article An atomistic model for Cu electrodeposition under nonequilibrium conditions is presented. Cu electrodeposition takes place with a height-dependent deposition rate that accounts for fluctuations in the local [formula presented] ions concentration at the interface, followed by surface diffusion. This model leads to an unstable interface with the development of protrusions and grooves. Subsequently the model is extended to account for the presence of organic additives, which compete with [formula presented] for adsorption at protrusions, leading to a stable interface with scaling exponents consistent with those of the Edwards-Wilkinson equation. The model reproduces the interface evolution experimentally observed for Cu electrodeposition in the absence and in the presence of organic additives. © 2002 The American Physical Society. Fil:Solari, H.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2002 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n4_p4_DeLeon
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
topic Additives
Chemical vapor deposition
Computer simulation
Copper
Diffusion
Electrodeposition
Interfaces (materials)
Ions
Mass transfer
Mathematical models
Monolayers
Probability
Surface roughness
Atomistic model
Edwards-Wilkinson equation
Energy barriers
Growth dynamics
Surface chemistry
article
spellingShingle Additives
Chemical vapor deposition
Computer simulation
Copper
Diffusion
Electrodeposition
Interfaces (materials)
Ions
Mass transfer
Mathematical models
Monolayers
Probability
Surface roughness
Atomistic model
Edwards-Wilkinson equation
Energy barriers
Growth dynamics
Surface chemistry
article
De Leon, P.F.J.
Albano, E.V.
Salvarezza, R.C.
Solari, H.G.
Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
topic_facet Additives
Chemical vapor deposition
Computer simulation
Copper
Diffusion
Electrodeposition
Interfaces (materials)
Ions
Mass transfer
Mathematical models
Monolayers
Probability
Surface roughness
Atomistic model
Edwards-Wilkinson equation
Energy barriers
Growth dynamics
Surface chemistry
article
description An atomistic model for Cu electrodeposition under nonequilibrium conditions is presented. Cu electrodeposition takes place with a height-dependent deposition rate that accounts for fluctuations in the local [formula presented] ions concentration at the interface, followed by surface diffusion. This model leads to an unstable interface with the development of protrusions and grooves. Subsequently the model is extended to account for the presence of organic additives, which compete with [formula presented] for adsorption at protrusions, leading to a stable interface with scaling exponents consistent with those of the Edwards-Wilkinson equation. The model reproduces the interface evolution experimentally observed for Cu electrodeposition in the absence and in the presence of organic additives. © 2002 The American Physical Society.
format Artículo
Artículo
publishedVersion
author De Leon, P.F.J.
Albano, E.V.
Salvarezza, R.C.
Solari, H.G.
author_facet De Leon, P.F.J.
Albano, E.V.
Salvarezza, R.C.
Solari, H.G.
author_sort De Leon, P.F.J.
title Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
title_short Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
title_full Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
title_fullStr Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
title_full_unstemmed Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
title_sort interface dynamics for copper electrodeposition: the role of organic additives in the growth mode
publishDate 2002
url http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n4_p4_DeLeon
work_keys_str_mv AT deleonpfj interfacedynamicsforcopperelectrodepositiontheroleoforganicadditivesinthegrowthmode
AT albanoev interfacedynamicsforcopperelectrodepositiontheroleoforganicadditivesinthegrowthmode
AT salvarezzarc interfacedynamicsforcopperelectrodepositiontheroleoforganicadditivesinthegrowthmode
AT solarihg interfacedynamicsforcopperelectrodepositiontheroleoforganicadditivesinthegrowthmode
_version_ 1769810038406250496