Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems
We study a piecewise linear version of a one-component monostable reaction diffusion model in a bounded domain, subjected to partially reflecting boundary conditions ("albedo" b.c.). We analyze the local and the global stability of the merging patterns and detect a bifurcation of the unifo...
Guardado en:
Publicado: |
1997
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v237_n1-2_p135_Izus http://hdl.handle.net/20.500.12110/paper_03784371_v237_n1-2_p135_Izus |
Aporte de: |
id |
paper:paper_03784371_v237_n1-2_p135_Izus |
---|---|
record_format |
dspace |
spelling |
paper:paper_03784371_v237_n1-2_p135_Izus2023-06-08T15:39:51Z Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems Bifurcation (mathematics) Boundary conditions Diffusion Mathematical models Piecewise linear techniques Global analysis Monostable reaction diffusion system Pattern selection Molecular dynamics We study a piecewise linear version of a one-component monostable reaction diffusion model in a bounded domain, subjected to partially reflecting boundary conditions ("albedo" b.c.). We analyze the local and the global stability of the merging patterns and detect a bifurcation of the uniform solution induced by changes in the reflectivity of the boundaries. 1997 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v237_n1-2_p135_Izus http://hdl.handle.net/20.500.12110/paper_03784371_v237_n1-2_p135_Izus |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Bifurcation (mathematics) Boundary conditions Diffusion Mathematical models Piecewise linear techniques Global analysis Monostable reaction diffusion system Pattern selection Molecular dynamics |
spellingShingle |
Bifurcation (mathematics) Boundary conditions Diffusion Mathematical models Piecewise linear techniques Global analysis Monostable reaction diffusion system Pattern selection Molecular dynamics Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems |
topic_facet |
Bifurcation (mathematics) Boundary conditions Diffusion Mathematical models Piecewise linear techniques Global analysis Monostable reaction diffusion system Pattern selection Molecular dynamics |
description |
We study a piecewise linear version of a one-component monostable reaction diffusion model in a bounded domain, subjected to partially reflecting boundary conditions ("albedo" b.c.). We analyze the local and the global stability of the merging patterns and detect a bifurcation of the uniform solution induced by changes in the reflectivity of the boundaries. |
title |
Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems |
title_short |
Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems |
title_full |
Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems |
title_fullStr |
Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems |
title_full_unstemmed |
Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems |
title_sort |
global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems |
publishDate |
1997 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v237_n1-2_p135_Izus http://hdl.handle.net/20.500.12110/paper_03784371_v237_n1-2_p135_Izus |
_version_ |
1768543949948977152 |