Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems

We study a piecewise linear version of a one-component monostable reaction diffusion model in a bounded domain, subjected to partially reflecting boundary conditions ("albedo" b.c.). We analyze the local and the global stability of the merging patterns and detect a bifurcation of the unifo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 1997
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v237_n1-2_p135_Izus
http://hdl.handle.net/20.500.12110/paper_03784371_v237_n1-2_p135_Izus
Aporte de:
id paper:paper_03784371_v237_n1-2_p135_Izus
record_format dspace
spelling paper:paper_03784371_v237_n1-2_p135_Izus2023-06-08T15:39:51Z Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems Bifurcation (mathematics) Boundary conditions Diffusion Mathematical models Piecewise linear techniques Global analysis Monostable reaction diffusion system Pattern selection Molecular dynamics We study a piecewise linear version of a one-component monostable reaction diffusion model in a bounded domain, subjected to partially reflecting boundary conditions ("albedo" b.c.). We analyze the local and the global stability of the merging patterns and detect a bifurcation of the uniform solution induced by changes in the reflectivity of the boundaries. 1997 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v237_n1-2_p135_Izus http://hdl.handle.net/20.500.12110/paper_03784371_v237_n1-2_p135_Izus
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bifurcation (mathematics)
Boundary conditions
Diffusion
Mathematical models
Piecewise linear techniques
Global analysis
Monostable reaction diffusion system
Pattern selection
Molecular dynamics
spellingShingle Bifurcation (mathematics)
Boundary conditions
Diffusion
Mathematical models
Piecewise linear techniques
Global analysis
Monostable reaction diffusion system
Pattern selection
Molecular dynamics
Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems
topic_facet Bifurcation (mathematics)
Boundary conditions
Diffusion
Mathematical models
Piecewise linear techniques
Global analysis
Monostable reaction diffusion system
Pattern selection
Molecular dynamics
description We study a piecewise linear version of a one-component monostable reaction diffusion model in a bounded domain, subjected to partially reflecting boundary conditions ("albedo" b.c.). We analyze the local and the global stability of the merging patterns and detect a bifurcation of the uniform solution induced by changes in the reflectivity of the boundaries.
title Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems
title_short Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems
title_full Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems
title_fullStr Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems
title_full_unstemmed Global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems
title_sort global analysis of pattern selection and bifurcations in monostable reaction-diffusion systems
publishDate 1997
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v237_n1-2_p135_Izus
http://hdl.handle.net/20.500.12110/paper_03784371_v237_n1-2_p135_Izus
_version_ 1768543949948977152