An alternative definition for the k-Riemann liouville fractional derivative

The aim of this paper is to introduce an alternative de nition for the k-Riemann-Liouville fractional derivative given in [6] and whose advantage is that it is the left inverse of the corresponding of k-Riemann-Liouville fractional integral operator introduced by [5]. Its basic properties are discus...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dorrego, Gustavo Abel
Formato: Artículo
Lenguaje:Inglés
Publicado: Hikari Ltd 2020
Materias:
Acceso en línea:http://repositorio.unne.edu.ar/handle/123456789/9103
Aporte de:
id I48-R184-123456789-9103
record_format dspace
spelling I48-R184-123456789-91032025-03-06T11:02:43Z An alternative definition for the k-Riemann liouville fractional derivative Dorrego, Gustavo Abel K-fractional calculus K-riemann-liouville fractional integral Matemáticas The aim of this paper is to introduce an alternative de nition for the k-Riemann-Liouville fractional derivative given in [6] and whose advantage is that it is the left inverse of the corresponding of k-Riemann-Liouville fractional integral operator introduced by [5]. Its basic properties are discussed, their Laplace transform, the derivative of the potential function and the derivative of the Mittag-Le er k-function introduced in is calculated. Fil: Dorrego, Gustavo Abel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Fil: Dorrego, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. 2020-06-02T22:47:47Z 2020-06-02T22:47:47Z 2015 Artículo 1314-7552 http://repositorio.unne.edu.ar/handle/123456789/9103 eng http://dx.doi.org/10.12988/ams.2015.411893 Dorrego, Gustavo Abel, 2015. An Alternative Definition for the k-Riemann-Liouville Fractional Derivative. Applied Mathematical Sciences. Bulgaria: Hikari Ltd, vol. 9. no. 10, p. 481 - 491. ISSN 1314-7552. openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf p. 481-491 application/pdf Hikari Ltd Applied Mathematical Sciences, 2015, vol. 9, no 10, p. 481-491
institution Universidad Nacional del Nordeste
institution_str I-48
repository_str R-184
collection RIUNNE - Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
language Inglés
topic K-fractional calculus
K-riemann-liouville fractional integral
Matemáticas
spellingShingle K-fractional calculus
K-riemann-liouville fractional integral
Matemáticas
Dorrego, Gustavo Abel
An alternative definition for the k-Riemann liouville fractional derivative
topic_facet K-fractional calculus
K-riemann-liouville fractional integral
Matemáticas
description The aim of this paper is to introduce an alternative de nition for the k-Riemann-Liouville fractional derivative given in [6] and whose advantage is that it is the left inverse of the corresponding of k-Riemann-Liouville fractional integral operator introduced by [5]. Its basic properties are discussed, their Laplace transform, the derivative of the potential function and the derivative of the Mittag-Le er k-function introduced in is calculated.
format Artículo
author Dorrego, Gustavo Abel
author_facet Dorrego, Gustavo Abel
author_sort Dorrego, Gustavo Abel
title An alternative definition for the k-Riemann liouville fractional derivative
title_short An alternative definition for the k-Riemann liouville fractional derivative
title_full An alternative definition for the k-Riemann liouville fractional derivative
title_fullStr An alternative definition for the k-Riemann liouville fractional derivative
title_full_unstemmed An alternative definition for the k-Riemann liouville fractional derivative
title_sort alternative definition for the k-riemann liouville fractional derivative
publisher Hikari Ltd
publishDate 2020
url http://repositorio.unne.edu.ar/handle/123456789/9103
work_keys_str_mv AT dorregogustavoabel analternativedefinitionforthekriemannliouvillefractionalderivative
AT dorregogustavoabel alternativedefinitionforthekriemannliouvillefractionalderivative
_version_ 1832345047143546880