Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient
This paper introduces a method for determining the authenticity of commercial cereal bars based on trace element fingerprints. In this regard, 120 cereal bars were prepared using microwave-assisted acid digestion and the concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, S...
Guardado en:
| Autores principales: | , , , , , , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2025
|
| Materias: | |
| Acceso en línea: | http://repositorio.unne.edu.ar/handle/123456789/59136 |
| Aporte de: |
| id |
I48-R184-123456789-59136 |
|---|---|
| record_format |
dspace |
| spelling |
I48-R184-123456789-591362025-12-05T11:20:13Z Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient Pérez Rodríguez, Michael Hidalgo, Melisa Jazmin Mendoza, Alberto González, Lucy T. Longoria Rodríguez, Francisco Goicoechea, Héctor Casimiro Pellerano, Roberto Gerardo Cereal bars Trace elements Fingerprinting ICP-MS Authentication LDA This paper introduces a method for determining the authenticity of commercial cereal bars based on trace element fingerprints. In this regard, 120 cereal bars were prepared using microwave-assisted acid digestion and the concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, V, and Zn were later measured by ICP-MS. Results confirmed the suitability of the analyzed samples for human consumption. Multielemental data underwent autoscaling preprocessing for then applying PCA, CART, and LDA to input data set. LDA model accomplished the highest classification modeling performance with a success rate of 92%, making it the suitable model for reliable cereal bar prediction. The proposed method demonstrates the potential of trace element fingerprints in distinguishing cereal bar samples according to their type (conventional and gluten-free) and principal ingredient (fruit, yogurt, chocolate), thereby contributing to global efforts for food authentication. 2025-12-05T11:11:38Z 2025-12-05T11:11:38Z 2023-06-07 Artículo Pérez Rodríguez, Michael, et al., 2023. Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient. Food Chemistry: X. Ámsterdam: Países Bajos, vol. 18, p. 1-7. E-ISSN 2772-753X. DOI https://doi.org/10.1016/j.fochx.2023.100744 http://repositorio.unne.edu.ar/handle/123456789/59136 en https://doi.org/10.1016/j.fochx.2023.100744 openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf p. 1-7 application/pdf Elsevier Food Chemistry: X, 2023, vol. 18, p. 1-7. |
| institution |
Universidad Nacional del Nordeste |
| institution_str |
I-48 |
| repository_str |
R-184 |
| collection |
RIUNNE - Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
| language |
Inglés |
| topic |
Cereal bars Trace elements Fingerprinting ICP-MS Authentication LDA |
| spellingShingle |
Cereal bars Trace elements Fingerprinting ICP-MS Authentication LDA Pérez Rodríguez, Michael Hidalgo, Melisa Jazmin Mendoza, Alberto González, Lucy T. Longoria Rodríguez, Francisco Goicoechea, Héctor Casimiro Pellerano, Roberto Gerardo Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient |
| topic_facet |
Cereal bars Trace elements Fingerprinting ICP-MS Authentication LDA |
| description |
This paper introduces a method for determining the authenticity of commercial cereal bars based on trace element fingerprints. In this regard, 120 cereal bars were prepared using microwave-assisted acid digestion and
the concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, V, and Zn were later measured by ICP-MS. Results confirmed the suitability of the analyzed samples for human consumption. Multielemental data underwent autoscaling preprocessing for then applying PCA, CART, and LDA to input data set. LDA model accomplished the highest classification modeling performance with a success rate of 92%, making it the suitable model for reliable cereal bar prediction. The proposed method demonstrates the potential of trace element fingerprints in distinguishing cereal bar samples according to their type (conventional and gluten-free)
and principal ingredient (fruit, yogurt, chocolate), thereby contributing to global efforts for food authentication. |
| format |
Artículo |
| author |
Pérez Rodríguez, Michael Hidalgo, Melisa Jazmin Mendoza, Alberto González, Lucy T. Longoria Rodríguez, Francisco Goicoechea, Héctor Casimiro Pellerano, Roberto Gerardo |
| author_facet |
Pérez Rodríguez, Michael Hidalgo, Melisa Jazmin Mendoza, Alberto González, Lucy T. Longoria Rodríguez, Francisco Goicoechea, Héctor Casimiro Pellerano, Roberto Gerardo |
| author_sort |
Pérez Rodríguez, Michael |
| title |
Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient |
| title_short |
Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient |
| title_full |
Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient |
| title_fullStr |
Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient |
| title_full_unstemmed |
Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient |
| title_sort |
measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient |
| publisher |
Elsevier |
| publishDate |
2025 |
| url |
http://repositorio.unne.edu.ar/handle/123456789/59136 |
| work_keys_str_mv |
AT perezrodriguezmichael measuringtraceelementfingerprintingforcerealbarauthenticationbasedontypeandprincipalingredient AT hidalgomelisajazmin measuringtraceelementfingerprintingforcerealbarauthenticationbasedontypeandprincipalingredient AT mendozaalberto measuringtraceelementfingerprintingforcerealbarauthenticationbasedontypeandprincipalingredient AT gonzalezlucyt measuringtraceelementfingerprintingforcerealbarauthenticationbasedontypeandprincipalingredient AT longoriarodriguezfrancisco measuringtraceelementfingerprintingforcerealbarauthenticationbasedontypeandprincipalingredient AT goicoecheahectorcasimiro measuringtraceelementfingerprintingforcerealbarauthenticationbasedontypeandprincipalingredient AT pelleranorobertogerardo measuringtraceelementfingerprintingforcerealbarauthenticationbasedontypeandprincipalingredient |
| _version_ |
1857347535748726784 |