A new definition of a fractional derivative of local type

In this paper we present a new definition of a local fractional derivative non-conformable and we obtain the main properties of the same, equivalent to the classic derivative of integer order.

Guardado en:
Detalles Bibliográficos
Autores principales: Guzmán, Paulo Matias, Langton, Guillermo Eduardo, Lugo Motta Bittencurt, Luciano Miguel, Medina, Julián, Nápoles Valdés, Juan Eduardo
Formato: Artículo
Lenguaje:Inglés
Publicado: Ilirias Research Institute 2025
Materias:
Acceso en línea:http://repositorio.unne.edu.ar/handle/123456789/58639
Aporte de:
id I48-R184-123456789-58639
record_format dspace
spelling I48-R184-123456789-586392025-09-24T20:20:18Z A new definition of a fractional derivative of local type Guzmán, Paulo Matias Langton, Guillermo Eduardo Lugo Motta Bittencurt, Luciano Miguel Medina, Julián Nápoles Valdés, Juan Eduardo Ractional derivatives Ractional calculus In this paper we present a new definition of a local fractional derivative non-conformable and we obtain the main properties of the same, equivalent to the classic derivative of integer order. 2025-09-12T12:38:50Z 2025-09-12T12:38:50Z 2018 Artículo Guzmán, Paulo Matías, et. al., 2018. A new definition of a fractional derivative of local type. Journal of Mathematical Analysis. Prishtina: Ilirias Research Institute, vol. 9, no. 2, p. 88-98. ISSN 2217-3412. 2217-3412 http://repositorio.unne.edu.ar/handle/123456789/58639 eng https://www.redalyc.org/journal/6037/603774916020/603774916020.pdf openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf p. 88-98 application/pdf Ilirias Research Institute Journal of Mathematical Analysis, 2018, vol. 9, no. 2, p. 88-98.
institution Universidad Nacional del Nordeste
institution_str I-48
repository_str R-184
collection RIUNNE - Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
language Inglés
topic Ractional derivatives
Ractional calculus
spellingShingle Ractional derivatives
Ractional calculus
Guzmán, Paulo Matias
Langton, Guillermo Eduardo
Lugo Motta Bittencurt, Luciano Miguel
Medina, Julián
Nápoles Valdés, Juan Eduardo
A new definition of a fractional derivative of local type
topic_facet Ractional derivatives
Ractional calculus
description In this paper we present a new definition of a local fractional derivative non-conformable and we obtain the main properties of the same, equivalent to the classic derivative of integer order.
format Artículo
author Guzmán, Paulo Matias
Langton, Guillermo Eduardo
Lugo Motta Bittencurt, Luciano Miguel
Medina, Julián
Nápoles Valdés, Juan Eduardo
author_facet Guzmán, Paulo Matias
Langton, Guillermo Eduardo
Lugo Motta Bittencurt, Luciano Miguel
Medina, Julián
Nápoles Valdés, Juan Eduardo
author_sort Guzmán, Paulo Matias
title A new definition of a fractional derivative of local type
title_short A new definition of a fractional derivative of local type
title_full A new definition of a fractional derivative of local type
title_fullStr A new definition of a fractional derivative of local type
title_full_unstemmed A new definition of a fractional derivative of local type
title_sort new definition of a fractional derivative of local type
publisher Ilirias Research Institute
publishDate 2025
url http://repositorio.unne.edu.ar/handle/123456789/58639
work_keys_str_mv AT guzmanpaulomatias anewdefinitionofafractionalderivativeoflocaltype
AT langtonguillermoeduardo anewdefinitionofafractionalderivativeoflocaltype
AT lugomottabittencurtlucianomiguel anewdefinitionofafractionalderivativeoflocaltype
AT medinajulian anewdefinitionofafractionalderivativeoflocaltype
AT napolesvaldesjuaneduardo anewdefinitionofafractionalderivativeoflocaltype
AT guzmanpaulomatias newdefinitionofafractionalderivativeoflocaltype
AT langtonguillermoeduardo newdefinitionofafractionalderivativeoflocaltype
AT lugomottabittencurtlucianomiguel newdefinitionofafractionalderivativeoflocaltype
AT medinajulian newdefinitionofafractionalderivativeoflocaltype
AT napolesvaldesjuaneduardo newdefinitionofafractionalderivativeoflocaltype
_version_ 1846204162818179072