Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels
The Statistical modeling of the data is essential in order to interpret synthetic aperture radar (SAR) images. Speckled data have been described under the multiplicative model using the G family of distributions, which is able to describe rough and extremely rough areas better than the K distribut...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Artículo |
Lenguaje: | Inglés |
Publicado: |
Institute of Electrical and Electronics Engineers Inc.
2024
|
Materias: | |
Acceso en línea: | http://repositorio.unne.edu.ar/handle/123456789/55296 |
Aporte de: |
id |
I48-R184-123456789-55296 |
---|---|
record_format |
dspace |
spelling |
I48-R184-123456789-552962025-03-06T11:06:34Z Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels Gambini, María Juliana Cassetti, Julia Analía Lucini, María Magdalena Frery, Alejandro César Feature extraction Image texture analysis Speckle Statistics Synthetic apertura radar The Statistical modeling of the data is essential in order to interpret synthetic aperture radar (SAR) images. Speckled data have been described under the multiplicative model using the G family of distributions, which is able to describe rough and extremely rough areas better than the K distribution. The survey article discusses in detail several statistical models for this kind of data. Under the G model, different degrees of roughness are associated with different parameter values; therefore, it is of paramount importance to have high quality estimators. Several works have been devoted to the subject of improving estimation with two main venues of research, namely, analytic and resampling procedures. 2024-09-12T11:00:05Z 2024-09-12T11:00:05Z 2015-01 Artículo Gambini, María Juliana, et al., 2015. Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels. IEEE Journal of selected topics in applied earth observations and remote sensing. New York: Institute of Electrical and Electronics Engineers Inc., vol. 8, no. 1, p. 365-375. ISSN 1939-1404. 1939-1404 http://repositorio.unne.edu.ar/handle/123456789/55296 eng http://dx.doi.org/10.1109/JSTARS.2014.2346017 openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf p. 365-375 application/pdf Institute of Electrical and Electronics Engineers Inc. IEEE Journal of selected topics in applied earth observations and remote sensing, 2015, vol. 8, no. 1, p. 365-375. |
institution |
Universidad Nacional del Nordeste |
institution_str |
I-48 |
repository_str |
R-184 |
collection |
RIUNNE - Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
language |
Inglés |
topic |
Feature extraction Image texture analysis Speckle Statistics Synthetic apertura radar |
spellingShingle |
Feature extraction Image texture analysis Speckle Statistics Synthetic apertura radar Gambini, María Juliana Cassetti, Julia Analía Lucini, María Magdalena Frery, Alejandro César Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
topic_facet |
Feature extraction Image texture analysis Speckle Statistics Synthetic apertura radar |
description |
The Statistical modeling of the data is essential in order to interpret synthetic aperture radar (SAR) images. Speckled data have been described under the multiplicative model using the G family of distributions, which is able to describe rough and extremely rough areas better than the K distribution. The survey article discusses in detail several statistical models for this kind of data. Under the G model, different degrees of roughness are associated with different parameter values; therefore, it is of paramount importance to have high quality estimators. Several works have been devoted to the subject of improving estimation with two main venues of research, namely, analytic and resampling procedures. |
format |
Artículo |
author |
Gambini, María Juliana Cassetti, Julia Analía Lucini, María Magdalena Frery, Alejandro César |
author_facet |
Gambini, María Juliana Cassetti, Julia Analía Lucini, María Magdalena Frery, Alejandro César |
author_sort |
Gambini, María Juliana |
title |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
title_short |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
title_full |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
title_fullStr |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
title_full_unstemmed |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
title_sort |
parameter estimation in sar imagery using stochastic distances and asymmetric kernels |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2024 |
url |
http://repositorio.unne.edu.ar/handle/123456789/55296 |
work_keys_str_mv |
AT gambinimariajuliana parameterestimationinsarimageryusingstochasticdistancesandasymmetrickernels AT cassettijuliaanalia parameterestimationinsarimageryusingstochasticdistancesandasymmetrickernels AT lucinimariamagdalena parameterestimationinsarimageryusingstochasticdistancesandasymmetrickernels AT freryalejandrocesar parameterestimationinsarimageryusingstochasticdistancesandasymmetrickernels |
_version_ |
1832345587338444800 |