Heterochromatin evolution in Arachis investigated through genome‑wide analysis of repetitive DNA

Main conclusion The most conspicuous diference among chromosomes and genomes in Arachis species, the patterns of heterochromatin, was mainly modeled by diferential amplifcation of diferent members of one superfamily of satellite DNAs. Divergence in repetitive DNA is a primary driving force for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samoluk, Sergio Sebastián, Chalup, Laura María Isabel, Chavarro, Carolina, Robledo, Germán Ariel, Bertioli, David J., Jackson, Scott Allen, Seijo, José Guillermo
Formato: Artículo
Lenguaje:Inglés
Publicado: Springer Nature 2024
Materias:
Acceso en línea:http://repositorio.unne.edu.ar/handle/123456789/54375
Aporte de:
Descripción
Sumario:Main conclusion The most conspicuous diference among chromosomes and genomes in Arachis species, the patterns of heterochromatin, was mainly modeled by diferential amplifcation of diferent members of one superfamily of satellite DNAs. Divergence in repetitive DNA is a primary driving force for genome and chromosome evolution. Section Arachis is karyo typically diverse and has six diferent genomes. Arachis glandulifera (D genome) has the most asymmetric karyotype and the highest reproductive isolation compared to the well-known A and B genome species. These features make A. glandulifera an interesting model species for studying the main repetitive components that accompanied the genome and chromosome diversifcation in the section. Here, we performed a genome-wide analysis of repetitive sequences in A. glandulifera and investigated the chromosome distribution of the identifed satellite DNA sequences (satDNAs). LTR retroelements, mainly the Ty3-gypsy families “Fidel/Feral” and “Pipoka/Pipa”, were the most represented. Comparative analyses with the A and B genomes showed that many of the previously described transposable elements (TEs) were diferently represented in the D genome, and that this variation accompanied changes in DNA content. In addition, four major satDNAs were character ized. Agla_CL8sat was the major component of pericentromeric heterochromatin, while Agla_CL39sat, Agla_CL69sat, and Agla_CL122sat were found in heterochromatic and/or euchromatic regions. Even though Agla_CL8sat belong to a diferent family than that of the major satDNA (ATR-2) found in the heterochromatin of the A, K, and F genomes, both satDNAs are members of the same superfamily. This fnding suggests that closely related satDNAs of an ancestral library were diferen tially amplifed leading to the major changes in the heterochromatin patterns that accompanied the karyotype and genome diferentiation in Arachis