Numerical modeling of multiphase fluid flow in porous media : application to heuristic optimization in slope stability analysis

The main objective of this work is to present the development of the modeling of the soil consolidation process with contaminant transport based on configurations of stress states and its application to obtain the critical surface in cohesive soil slopes using heuristics optimization based on geneti...

Descripción completa

Detalles Bibliográficos
Autores principales: Beneyto, Pablo Alejandro, Di Rado, Héctor Ariel, Mroginski, Javier Luis, Awruch, Armando Miguel
Formato: Artículo
Lenguaje:Inglés
Publicado: Asociación Argentina de Mecánica Computacional 2024
Materias:
Acceso en línea:http://repositorio.unne.edu.ar/handle/123456789/54188
Aporte de:
id I48-R184-123456789-54188
record_format dspace
spelling I48-R184-123456789-541882024-06-05T11:33:25Z Numerical modeling of multiphase fluid flow in porous media : application to heuristic optimization in slope stability analysis Beneyto, Pablo Alejandro Di Rado, Héctor Ariel Mroginski, Javier Luis Awruch, Armando Miguel Immiscible pollutants Finite elements Multiphase porous media Genetic algorithm The main objective of this work is to present the development of the modeling of the soil consolidation process with contaminant transport based on configurations of stress states and its application to obtain the critical surface in cohesive soil slopes using heuristics optimization based on genetic algorithms. This improved mathematical approach, in addition to covering a wide range of isothermal consolidation problems, inherits the ductility of the three-phase model previously developed by the authors and allows a direct reduction to other more restrictive systems. The results of the method and its heuristic optimization based on genetic algorithms are presented together with the comparison with other approximation methods. From the results presented, it is observed that in cohesive clays, the method of genetic algorithms obtained a critical surface that fits a circle with a mean square error of 1.85%. 2024-06-04T11:18:12Z 2024-06-04T11:18:12Z 2021-11 Artículo Beneyto, Pablo Alejandro, et al., 2021. Numerical modeling of multiphase fluid flow in porous media : application to heuristic optimization in slope stability analysis. Mecánica Computacional. Santa Fe: Asociación Argentina de Mecánica Computacional, vol. XXXVIII, no. 3, p. 65-65. E-ISSN 2591-3522. 1666-6070 http://repositorio.unne.edu.ar/handle/123456789/54188 eng openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf p. 65-65 application/pdf Asociación Argentina de Mecánica Computacional Mecánica Computacional, 2021, vol. XXXVIII, no. 3, p. 65-65.
institution Universidad Nacional del Nordeste
institution_str I-48
repository_str R-184
collection RIUNNE - Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
language Inglés
topic Immiscible pollutants
Finite elements
Multiphase porous media
Genetic algorithm
spellingShingle Immiscible pollutants
Finite elements
Multiphase porous media
Genetic algorithm
Beneyto, Pablo Alejandro
Di Rado, Héctor Ariel
Mroginski, Javier Luis
Awruch, Armando Miguel
Numerical modeling of multiphase fluid flow in porous media : application to heuristic optimization in slope stability analysis
topic_facet Immiscible pollutants
Finite elements
Multiphase porous media
Genetic algorithm
description The main objective of this work is to present the development of the modeling of the soil consolidation process with contaminant transport based on configurations of stress states and its application to obtain the critical surface in cohesive soil slopes using heuristics optimization based on genetic algorithms. This improved mathematical approach, in addition to covering a wide range of isothermal consolidation problems, inherits the ductility of the three-phase model previously developed by the authors and allows a direct reduction to other more restrictive systems. The results of the method and its heuristic optimization based on genetic algorithms are presented together with the comparison with other approximation methods. From the results presented, it is observed that in cohesive clays, the method of genetic algorithms obtained a critical surface that fits a circle with a mean square error of 1.85%.
format Artículo
author Beneyto, Pablo Alejandro
Di Rado, Héctor Ariel
Mroginski, Javier Luis
Awruch, Armando Miguel
author_facet Beneyto, Pablo Alejandro
Di Rado, Héctor Ariel
Mroginski, Javier Luis
Awruch, Armando Miguel
author_sort Beneyto, Pablo Alejandro
title Numerical modeling of multiphase fluid flow in porous media : application to heuristic optimization in slope stability analysis
title_short Numerical modeling of multiphase fluid flow in porous media : application to heuristic optimization in slope stability analysis
title_full Numerical modeling of multiphase fluid flow in porous media : application to heuristic optimization in slope stability analysis
title_fullStr Numerical modeling of multiphase fluid flow in porous media : application to heuristic optimization in slope stability analysis
title_full_unstemmed Numerical modeling of multiphase fluid flow in porous media : application to heuristic optimization in slope stability analysis
title_sort numerical modeling of multiphase fluid flow in porous media : application to heuristic optimization in slope stability analysis
publisher Asociación Argentina de Mecánica Computacional
publishDate 2024
url http://repositorio.unne.edu.ar/handle/123456789/54188
work_keys_str_mv AT beneytopabloalejandro numericalmodelingofmultiphasefluidflowinporousmediaapplicationtoheuristicoptimizationinslopestabilityanalysis
AT diradohectorariel numericalmodelingofmultiphasefluidflowinporousmediaapplicationtoheuristicoptimizationinslopestabilityanalysis
AT mroginskijavierluis numericalmodelingofmultiphasefluidflowinporousmediaapplicationtoheuristicoptimizationinslopestabilityanalysis
AT awrucharmandomiguel numericalmodelingofmultiphasefluidflowinporousmediaapplicationtoheuristicoptimizationinslopestabilityanalysis
_version_ 1808039412216365056