Nonlinear optimization for a tumor invasion PDE model : computational and applied mathematics
In thiswork,we introduce amethodology to approximate unknownparameters that appear on a non-linear reaction–diffusionmodel of tumor invasion. These equations consider that tumor-induced alteration of micro-environmental pH furnishes a mechanism for cancer invasion. A coupled system reaction–diffusio...
Autores principales: | , , , |
---|---|
Formato: | Artículo |
Lenguaje: | Inglés |
Publicado: |
Sociedade Brasileira de Matemática Aplicada e Computacional
2021
|
Materias: | |
Acceso en línea: | http://repositorio.unne.edu.ar/handle/123456789/30327 |
Aporte de: |
id |
I48-R184-123456789-30327 |
---|---|
record_format |
dspace |
spelling |
I48-R184-123456789-303272025-03-06T11:02:37Z Nonlinear optimization for a tumor invasion PDE model : computational and applied mathematics Quiroga, Andrés Agustín Ignacio Torres, Germán Ariel Fernández Ferreyra, Damián Roberto Turner, Cristina Vilma Reaction–diffusion equation Tumor invasión PDE-constrained optimization Adjoint method Finite element method In thiswork,we introduce amethodology to approximate unknownparameters that appear on a non-linear reaction–diffusionmodel of tumor invasion. These equations consider that tumor-induced alteration of micro-environmental pH furnishes a mechanism for cancer invasion. A coupled system reaction–diffusion explaining this model is given by three partial differential equations for the non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess concentration of H+ ions. The tumor model parameters have a corresponding biological meaning: the reabsorption rate, the destructive influence of H+ ions in the healthy tissue, the growth rate of tumor tissue and the diffusion coefficient. We propose to solve the direct problem using the Finite Element Method (FEM) and minimize an appropriate functional including both the real data (obtained via in-vitro experiments and fluorescence ratio imaging microscopy) and the numerical solution. The gradient of the functional is computed by the adjoint method 2021-12-09T15:35:11Z 2021-12-09T15:35:11Z 2018 Artículo Quiroga, Andrés Agustín Ignacio, et al., 2018. Nonlinear optimization for a tumor invasion PDE model : computational and applied mathematics. San Pablo: Sociedade Brasileira de Matemática Aplicada e Computacional, vol. 37, no. 1, p. 485-499. ISSN 2238-3603. 2238-3603 http://repositorio.unne.edu.ar/handle/123456789/30327 eng openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf application/pdf Sociedade Brasileira de Matemática Aplicada e Computacional Computational And Applied Mathematics, 2018, vol. 37, no. 1, p. 485-499. |
institution |
Universidad Nacional del Nordeste |
institution_str |
I-48 |
repository_str |
R-184 |
collection |
RIUNNE - Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
language |
Inglés |
topic |
Reaction–diffusion equation Tumor invasión PDE-constrained optimization Adjoint method Finite element method |
spellingShingle |
Reaction–diffusion equation Tumor invasión PDE-constrained optimization Adjoint method Finite element method Quiroga, Andrés Agustín Ignacio Torres, Germán Ariel Fernández Ferreyra, Damián Roberto Turner, Cristina Vilma Nonlinear optimization for a tumor invasion PDE model : computational and applied mathematics |
topic_facet |
Reaction–diffusion equation Tumor invasión PDE-constrained optimization Adjoint method Finite element method |
description |
In thiswork,we introduce amethodology to approximate unknownparameters that appear on a non-linear reaction–diffusionmodel of tumor invasion. These equations consider that tumor-induced alteration of micro-environmental pH furnishes a mechanism for cancer invasion. A coupled system reaction–diffusion explaining this model is given by three partial differential equations for the non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess concentration of H+ ions. The tumor model parameters have a corresponding biological meaning: the reabsorption rate, the destructive influence of H+ ions in the healthy tissue, the growth rate of tumor tissue and the diffusion coefficient. We propose to solve the direct problem using the Finite Element Method (FEM) and minimize an appropriate functional including both the real data (obtained via in-vitro experiments and fluorescence ratio imaging microscopy) and the numerical solution. The gradient of the functional is computed by the adjoint method |
format |
Artículo |
author |
Quiroga, Andrés Agustín Ignacio Torres, Germán Ariel Fernández Ferreyra, Damián Roberto Turner, Cristina Vilma |
author_facet |
Quiroga, Andrés Agustín Ignacio Torres, Germán Ariel Fernández Ferreyra, Damián Roberto Turner, Cristina Vilma |
author_sort |
Quiroga, Andrés Agustín Ignacio |
title |
Nonlinear optimization for a tumor invasion PDE model : computational and applied mathematics |
title_short |
Nonlinear optimization for a tumor invasion PDE model : computational and applied mathematics |
title_full |
Nonlinear optimization for a tumor invasion PDE model : computational and applied mathematics |
title_fullStr |
Nonlinear optimization for a tumor invasion PDE model : computational and applied mathematics |
title_full_unstemmed |
Nonlinear optimization for a tumor invasion PDE model : computational and applied mathematics |
title_sort |
nonlinear optimization for a tumor invasion pde model : computational and applied mathematics |
publisher |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publishDate |
2021 |
url |
http://repositorio.unne.edu.ar/handle/123456789/30327 |
work_keys_str_mv |
AT quirogaandresagustinignacio nonlinearoptimizationforatumorinvasionpdemodelcomputationalandappliedmathematics AT torresgermanariel nonlinearoptimizationforatumorinvasionpdemodelcomputationalandappliedmathematics AT fernandezferreyradamianroberto nonlinearoptimizationforatumorinvasionpdemodelcomputationalandappliedmathematics AT turnercristinavilma nonlinearoptimizationforatumorinvasionpdemodelcomputationalandappliedmathematics |
_version_ |
1832344976731668480 |