Pituitary tumors: Cell type-specific roles for BMP-4

BMP-4 plays a crucial role not only in the formation of the anterior pituitary during embryo development but also in the pathogenesis of pituitary tumors in adults. In tumor cells, BMP-4 promotes prolactin secretion and lactotroph cell proliferation through a Smad-estrogen receptor crosstalk but it...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Labeur, M.
Otros Autores: Páez-Pereda, M., Haedo, M., Arzt, E., Stalla, G.K
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11706caa a22014177a 4500
001 PAPER-7677
003 AR-BaUEN
005 20230518203726.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77955332616 
024 7 |2 cas  |a Smad protein, 62395-38-4; bromocriptine, 25614-03-3; corticotropin, 11136-52-0, 9002-60-2, 9061-27-2; cyclic AMP, 60-92-4; estradiol, 50-28-2; growth hormone releasing factor, 83930-13-6, 9034-39-3; octreotide, 83150-76-9; pasireotide, 396091-73-9; prolactin, 12585-34-1, 50647-00-2, 9002-62-4; Adrenocorticotropic Hormone, 9002-60-2; BMP4 protein, human; Bone Morphogenetic Protein 4; Bone Morphogenetic Proteins; Prolactin, 9002-62-4 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MCEND 
100 1 |a Labeur, M. 
245 1 0 |a Pituitary tumors: Cell type-specific roles for BMP-4 
260 |c 2010 
270 1 0 |m Stalla, G.K.; Max Planck Institute of Psychiatry, Kraepelinstr. 2, 80804 Munich, Germany; email: stalla@mpipsykl.mpg.de 
506 |2 openaire  |e Política editorial 
504 |a Asa, S.L., Kelly, M.A., Grandy, D.K., Low, M.J., Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice (1999) Endocrinology, 140, pp. 5348-5355 
504 |a Asa, S.L., Penz, G., Kovacs, K., Ezrin, C., Prolactin cells in the human pituitary. A quantitative immunocytochemical analysis (1982) Arch. Pathol. Lab. Med., 106, pp. 360-363 
504 |a Derynck, R., Akhurst, R.J., Balmain, A., TGF-beta signaling in tumor suppression and cancer progression (2001) Nat. Genet., 29, pp. 117-129 
504 |a Derynck, R., Zhang, Y., Feng, X.H., Smads: transcriptional activators of TGF-beta responses (1998) Cell, 95, pp. 737-740 
504 |a Faure, M.O., Nicol, L., Fabre, S., Fontaine, J., Mohoric, N., McNeilly, A., Taragnat, C., BMP-4 inhibits follicle-stimulating hormone secretion in ewe pituitary (2005) J. Endocrinol., 186, pp. 109-121 
504 |a Gazzerro, E., Canalis, E., Bone morphogenetic proteins and their antagonists (2006) Rev. Endocr. Metab. Disord., 7, pp. 51-65 
504 |a Giacomini, D., Paez-Pereda, M., Stalla, J., Stalla, G.K., Arzt, E., Molecular interaction of BMP-4, TGF-beta, and estrogens in lactotrophs: impact on the PRL promoter (2009) Mol. Endocrinol., 23, pp. 1102-1114 
504 |a Giacomini, D., Paez-Pereda, M., Theodoropoulou, M., Labeur, M., Refojo, D., Gerez, J., Chervin, A., Arzt, E., Bone morphogenetic protein-4 inhibits corticotroph tumor cells: involvement in the retinoic acid inhibitory action (2006) Endocrinology, 147, pp. 247-256 
504 |a Heaney, A.P., Fernando, M., Melmed, S., Functional role of estrogen in pituitary tumor pathogenesis (2002) J. Clin. Invest., 109, pp. 277-283 
504 |a Japon, M.A., Rubinstein, M., Low, M.J., In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development (1994) J. Histochem. Cytochem., 42, pp. 1117-1125 
504 |a Kahata, K., Hayashi, M., Asaka, M., Hellman, U., Kitagawa, H., Yanagisawa, J., Kato, S., Miyazono, K., Regulation of transforming growth factor-beta and bone morphogenetic protein signaling by transcriptional coactivator GCN5 (2004) Genes Cells, 9, pp. 143-151 
504 |a Kawabata, M., Imamura, T., Miyazono, K., Signal transduction by bone morphogenetic proteins (1998) Cytokine Growth Factor Rev., 9, pp. 49-61 
504 |a Kelly, M.A., Rubinstein, M., Asa, S.L., Zhang, G., Saez, C., Bunzow, J.R., Allen, R.G., Low, M.J., Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice (1997) Neuron, 19, pp. 103-113 
504 |a Lee, K.B., Khivansara, V., Santos, M.M., Lamba, P., Yuen, T., Sealfon, S.C., Bernard, D.J., Bone morphogenetic protein 2 and activin A synergistically stimulate follicle-stimulating hormone beta subunit transcription (2007) J. Mol. Endocrinol., 38, pp. 315-330 
504 |a Lohrer, P., Gloddek, J., Hopfner, U., Losa, M., Uhl, E., Pagotto, U., Stalla, G.K., Renner, U., Vascular endothelial growth factor production and regulation in rodent and human pituitary tumor cells in vitro (2001) Neuroendocrinology, 74, pp. 95-105 
504 |a Massague, J., TGF-beta signal transduction (1998) Annu. Rev. Biochem., 67, pp. 753-791 
504 |a Massague, J., How cells read TGF-beta signals (2000) Nat. Rev. Mol. Cell Biol., 1, pp. 169-178 
504 |a Massague, J., Chen, Y.G., Controlling TGF-beta signaling (2000) Genes Dev., 14, pp. 627-644 
504 |a Miyazono, K., Maeda, S., Imamura, T., BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk (2005) Cytokine Growth Factor Rev., 16, pp. 251-263 
504 |a Miyoshi, T., Otsuka, F., Otani, H., Inagaki, K., Goto, J., Yamashita, M., Ogura, T., Makino, H., Involvement of bone morphogenetic protein-4 in GH regulation by octreotide and bromocriptine in rat pituitary GH3 cells (2008) J. Endocrinol., 197, pp. 159-169 
504 |a Nudi, M., Ouimette, J.F., Drouin, J., Bone morphogenic protein (Smad)-mediated repression of proopiomelanocortin transcription by interference with Pitx/Tpit activity (2005) Mol. Endocrinol., 19, pp. 1329-1342 
504 |a Onichtchouk, D., Chen, Y.G., Dosch, R., Gawantka, V., Delius, H., Massague, J., Niehrs, C., Silencing of TGF-beta signaling by the pseudoreceptor BAMBI (1999) Nature, 401, pp. 480-485 
504 |a Paez-Pereda, M., Giacomini, D., Refojo, D., Nagashima, A.C., Hopfner, U., Grubler, Y., Chervin, A., Arzt, E., Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 1034-1039 
504 |a Paez-Pereda, M., Kovalovsky, D., Hopfner, U., Theodoropoulou, M., Pagotto, U., Uhl, E., Losa, M., Stalla, G.K., Retinoic acid prevents experimental Cushing syndrome (2001) J. Clin. Invest., 108, pp. 1123-1131 
504 |a Rosenfeld, M.G., Briata, P., Dasen, J., Gleiberman, A.S., Kioussi, C., Lin, C.J., O'Connell, S.M., Treier, M., Multistep signaling and transcriptional requirements for pituitary organogenesis in vivo (2000) Recent Prog. Horm. Res., 55, pp. 1-14 
504 |a Shen, E.S., Hardenburg, J.L., Meade, E.H., Arey, B.J., Merchenthaler, I., Lopez, F.J., Estradiol induces galanin gene expression in the pituitary of the mouse in an estrogen receptor alpha-dependent manner (1999) Endocrinology, 140, pp. 2628-2631 
504 |a Simmons, D.M., Voss, J.W., Ingraham, H.A., Holloway, J.M., Broide, R.S., Rosenfeld, M.G., Swanson, L.W., Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors (1990) Genes Dev., 4, pp. 695-711 
504 |a Tsukamoto, N., Otsuka, F., Miyoshi, T., Yamanaka, R., Inagaki, K., Yamashita, M., Otani, H., Makino, H., Effects of bone morphogenetic protein (BMP) on adrenocorticotropin production by pituitary corticotrope cells: involvement of up-regulation of BMP receptor signaling by somatostatin analogs (2010) Endocrinology, 151, pp. 1129-1141 
504 |a Vitt, U.A., Hsu, S.Y., Hsueh, A.J., Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules (2001) Mol. Endocrinol., 15, pp. 681-694 
504 |a Voss, J.W., Rosenfeld, M.G., Anterior pituitary development: short tales from dwarf mice (1992) Cell, 70, pp. 527-530 
504 |a vsian-Kretchmer, O., Hsueh, A.J., Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists (2004) Mol. Endocrinol., 18, pp. 1-12 
504 |a Wrana, J.L., Regulation of Smad activity (2000) Cell, 100, pp. 189-192 
520 3 |a BMP-4 plays a crucial role not only in the formation of the anterior pituitary during embryo development but also in the pathogenesis of pituitary tumors in adults. In tumor cells, BMP-4 promotes prolactin secretion and lactotroph cell proliferation through a Smad-estrogen receptor crosstalk but it inhibits ACTH production and cell proliferation of corticotrophs. In addition, BMP-4 increases GH secretion in rat pituitary tumor somatolactotroph GH3 cells and FSHβ subunit gene transcription in the murine gonadotroph cell line, LβT2. Therefore, BMP-4 has a differential role on different types of pituitary tumors: it promotes pituitary prolactinoma while it inhibits corticotroph pathogenesis in Cushing's disease. The modulation of BMP-4 also plays an important role in the therapeutic mechanism of action of bromocriptine, somatostatin analogs and retinoic acid. © 2010 Elsevier Ireland Ltd.  |l eng 
593 |a Max Planck Institute of Psychiatry, Kraepelinstr. 2, 80804 Munich, Germany 
593 |a Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, FCEN, Universidad de Buenos Aires and CONICET, C1428EHA Buenos Aires, Argentina 
690 1 0 |a ACTH 
690 1 0 |a BMP-4 
690 1 0 |a PITUITARY TUMORS 
690 1 0 |a PROLACTIN 
690 1 0 |a RETINOIC ACID 
690 1 0 |a TGF-Β 
690 1 0 |a BONE MORPHOGENETIC PROTEIN 4 
690 1 0 |a BROMOCRIPTINE 
690 1 0 |a CORTICOTROPIN 
690 1 0 |a CYCLIC AMP 
690 1 0 |a ESTRADIOL 
690 1 0 |a ESTROGEN 
690 1 0 |a GROWTH HORMONE RELEASING FACTOR 
690 1 0 |a MESSENGER RNA 
690 1 0 |a OCTREOTIDE 
690 1 0 |a PASIREOTIDE 
690 1 0 |a PROLACTIN 
690 1 0 |a RECOMBINANT FOLLITROPIN 
690 1 0 |a SMAD PROTEIN 
690 1 0 |a SOMATOSTATIN DERIVATIVE 
690 1 0 |a ACTH SECRETING CELL 
690 1 0 |a ARTICLE 
690 1 0 |a CARCINOGENESIS 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CELL TYPE 
690 1 0 |a CUSHING DISEASE 
690 1 0 |a DISEASE ASSOCIATION 
690 1 0 |a DRUG MECHANISM 
690 1 0 |a DRUG POTENTIATION 
690 1 0 |a GENETIC TRANSCRIPTION 
690 1 0 |a GONADOTROPIN SECRETING CELL 
690 1 0 |a GROWTH HORMONE SECRETING ADENOMA 
690 1 0 |a HORMONE RELEASE 
690 1 0 |a HUMAN 
690 1 0 |a HYPOPHYSIS ADENOMA 
690 1 0 |a HYPOPHYSIS TUMOR 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROLACTIN SECRETING CELL 
690 1 0 |a PROLACTINOMA 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a ADRENOCORTICOTROPIC HORMONE 
690 1 0 |a ADULT 
690 1 0 |a ANIMALS 
690 1 0 |a BONE MORPHOGENETIC PROTEIN 4 
690 1 0 |a BONE MORPHOGENETIC PROTEINS 
690 1 0 |a HUMANS 
690 1 0 |a MICE 
690 1 0 |a PITUITARY ACTH HYPERSECRETION 
690 1 0 |a PITUITARY GLAND 
690 1 0 |a PITUITARY NEOPLASMS 
690 1 0 |a PROLACTIN 
690 1 0 |a PROLACTINOMA 
690 1 0 |a RATS 
653 0 0 |a som 230 
700 1 |a Páez-Pereda, M. 
700 1 |a Haedo, M. 
700 1 |a Arzt, E. 
700 1 |a Stalla, G.K. 
773 0 |d 2010  |g v. 326  |h pp. 85-88  |k n. 1-2  |p Mol. Cell. Endocrinol.  |x 03037207  |w (AR-BaUEN)CENRE-6138  |t Molecular and Cellular Endocrinology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955332616&doi=10.1016%2fj.mce.2010.04.006&partnerID=40&md5=48e622e610ad6868d838313f0d009889  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.mce.2010.04.006  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03037207_v326_n1-2_p85_Labeur  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03037207_v326_n1-2_p85_Labeur  |y Registro en la Biblioteca Digital 
961 |a paper_03037207_v326_n1-2_p85_Labeur  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 68630