Synthesis, molecular docking and biological evaluation of novel phthaloyl derivatives of 3-amino-3-aryl propionic acids as inhibitors of Trypanosoma cruzi trans-sialidase

In the last two decades, trans-sialidase of Trypanosoma cruzi (TcTS) has been an important pharmacological target for developing new anti-Chagas agents. In a continuous effort to discover new potential TcTS inhibitors, 3-amino-3-arylpropionic acid derivatives (series A) and novel phthaloyl derivativ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kashif, M.
Otros Autores: Chacón-Vargas, K.F, López-Cedillo, J.C, Nogueda-Torres, B., Paz-González, A.D, Ramírez-Moreno, E., Agusti, R., Uhrig, M.L, Reyes-Arellano, A., Peralta-Cruz, J., Ashfaq, M., Rivera, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Masson SAS 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 22098caa a22021617a 4500
001 PAPER-25107
003 AR-BaUEN
005 20230518205706.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85049568232 
024 7 |2 cas  |a benznidazole, 22994-85-0; nifurtimox, 23256-30-6; sialidase, 9001-67-6; Glycoproteins; Neuraminidase; Propionates; trans-sialidase; Trypanocidal Agents 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EJMCA 
100 1 |a Kashif, M. 
245 1 0 |a Synthesis, molecular docking and biological evaluation of novel phthaloyl derivatives of 3-amino-3-aryl propionic acids as inhibitors of Trypanosoma cruzi trans-sialidase 
260 |b Elsevier Masson SAS  |c 2018 
270 1 0 |m Rivera, G.; Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Mexico; email: gildardors@hotmail.com 
506 |2 openaire  |e Política editorial 
504 |a Chagas, C., Nova tripanozomiaze humana: estudos sobre amorfolojia e o ciclo evolutivo do Schizotrypanum cruzin. gen., n. sp., ajente etiolojico de nova entidade morbidado homem (1909) Mem. Inst. Oswaldo Cruz, 1, pp. 159-218 
504 |a Cruz-Reyes, A., Pickering-Lopez, J.M., Chagas disease in Mexico: an analysis of geographical distribution during the past 76 years-a review (2006) Mem. Inst. Oswaldo Cruz, 101, pp. 345-354 
504 |a Coura, J.R., Dias, J.C., Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery (2009) Mem. Inst. Oswaldo Cruz, 104, pp. 31-40 
504 |a Salomon, C.J., First century of Chagas’ disease: an overview on novel approaches to nifurtimox and benzonidazole delivery systems (2012) J. Pharmacol. Sci., 101, pp. 888-894 
504 |a Castro, J.A., deMecca, M.M., Bartel, L.C., Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis) (2006) Hum. Exp. Toxicol., 25, pp. 471-479 
504 |a Viotti, R., Vigliano, C., Lococo, B., Alvarez, M.G., Petti, M., Bertocchi, G., Armenti, A., Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities (2009) Expert Rev. Anti Infect. Ther., 7, pp. 157-163 
504 |a Altcheh, J., Moscatelli, G., Moroni, S., Bournissen, G.F., Freilij, H., Adverse events after the use of benznidazole in infants and children with Chagas disease (2011) Pediatrics, 127, pp. 212-218 
504 |a Santos, V.P., Barrias, E.S., Santos, J.F., Barros Moreira, T.L., De Carvalho, T.M., Urbina, J.A., De Souza, W., Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi (2012) Int. J. Antimicrob. Agents, 40, pp. 61-71 
504 |a Chamond, N., Coatnoan, N., Minoprio, P., Immunotherapy of Trypanosoma cruzi infections (2002) Curr. Drug Targets - Immune, Endocr. Metab. Disord., 2, pp. 247-254 
504 |a Buschiazzo, A., Amaya, M.F., Cremona, M.L., Frasch, A.C., Alzari, P.M., The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis (2002) Mol. Cell, 31, pp. 757-768 
504 |a Amaya, M.F., Watts, A.G., Damager, I., Wehenkel, A., Nguyen, T., Buschiazzo, A., Paris, G., Alzari, P.M., Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase (2004) Structure, 31, pp. 775-784 
504 |a Buchini, S., Buschiazzo, A., Withers, S.G., A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors (2008) Angew. Chem. Int. Ed., 25, pp. 2700-2703 
504 |a Kashif, M., Herrera, A.M., Lara-Ramirez, E.E., Ramírez-Moreno, E., García, V.B., Ashfaq, M., Rivera, G., Recent developments in trans-sialidase inhibitors of Trypanosoma cruzi (2017) J. Drug Target., 25, pp. 485-498 
504 |a Lima, A.H., Lameira, J., Alves, C.N., Protein–ligand interaction of T. cruzi trans-sialidase inhibitors: a docking and QM/MM MD study (2012) Struct. Chem., 1, pp. 147-152 
504 |a Neres, J., Bonnet, P., Edwards, P.N., Kotian, P.L., Buschiazzo, A., Alzari, P.M., Douglas, K.T., Benzoic acid and pyridine derivatives as inhibitors of Trypanosoma cruzi trans-sialidase (2007) Bioorg. Med. Chem., 15, pp. 2106-2119 
504 |a Neres, J., Brewer, M.L., Ratier, L., Botti, H., Buschiazzo, A., Edwards, P.N., Mortenson, P.N., Bryce, R.A., Discovery of novel inhibitors of Trypanosoma cruzitrans-sialidase from in silico screening (2009) Bioorganic Med. Chem lett, 1, pp. 589-596 
504 |a Kim, J.H., Ryu, H.W., Shim, J.H., Park, K.H., Withers, S.G., Development of new and selective trypanosoma cruzi trans-sialidase inhibitors from sulfonamide chalcones and their derivatives (2009) Chembiochem, 12, pp. 2475-2479 
504 |a Arioka, S., Sakagami, M., Uematsu, R., Yamaguchi, H., Togame, H., Takemoto, H., Hinou, H., Nishimura, S.I., Potent inhibitor scaffold against Trypanosoma cruzi trans-sialidase (2010) Bioorg. Med. Chem., 15, pp. 1633-1640 
504 |a Kashif, M., Moreno-Herrera, A., Villalobos-Rocha, J.C., Nogueda-Torres, B., Pérez-Villanueva, J., Rodríguez-Villar, K., Rivera, G., Benzoic acid derivatives with trypanocidal activity: enzymatic analysis and molecular docking studies toward trans-sialidase (2017) Molecules, 22, p. 1863 
504 |a Noguchi, T., Shimazawa, R., Nagasawa, K., Hashimoto, Y., Thalidomide and its analogues as cyclooxygenase inhibitors (2002) Bioorganic Med Chem lett, 12, pp. 1043-1046 
504 |a Sano, H., Noguchi, T., Tanatani, A., Hashimoto, Y., Miyachi, H., Design and synthesis of subtype-selective cyclooxygenase (COX) inhibitors derived from thalidomide (2005) Bioorg. Med. Chem., 13, pp. 3079-3091 
504 |a Alaa, A.M., ElTahir, K.E., Asiri, Y.A., Synthesis, anti-inflammatory activity and COX-1/COX-2 inhibition of novel substituted cyclic imides. Part 1: molecular docking study (2011) Eur. J. Med. Chem., 46, pp. 1648-1655 
504 |a Alaa, A.M., El-Azab, A.S., Attia, S.M., Al-Obaid, A.M., Al-Omar, M.A., El-Subbagh, H.I., Synthesis and biological evaluation of some novel cyclic-imides as hypoglycaemic, anti-hyperlipidemic agents (2011) Eur. J. Med. Chem., 46, pp. 4324-4329 
504 |a Alanazi, A.M., El-Azab, A.S., Al-Suwaidan, I.A., ElTahir, K.E., Asiri, Y.A., Abdel-Aziz, N.I., Alaa, A.M., Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: anti-inflammatory and analgesic activities (2015) Eur. J. Med. Chem., 92, pp. 115-123 
504 |a Abdel-Aziz, A.A.M., El-Azab, A.S., Attia, S.M., Al-Obaid, A.M., Al-Omar, M.A., El-Subbagh, H.I., Synthesis and biological evaluation of some novel cyclicimides as hypoglycaemic, anti-hyperlipidemic agents (2011) Eur. J. Med. Chem., 46, pp. 4324-4329 
504 |a Alanazi, A.M., El-Azab, A.S., Al-Suwaidan, I.A., ElTahir, K.E.H., Asiri, Y.A., Abdel-Aziz, N.I., Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: anti-inflammatory and analgesic activities (2015) Eur. J. Med. Chem., 92, pp. 115-123 
504 |a Abdel-Aziz, A.A.M., El-Azab, A.S., Attia, S.M., Al-Obaid, A.M., Al-Omar, M.A., El-Subbagh, H.I., Synthesis and biological evaluation of some novel cyclicimides as hypoglycaemic, anti-hyperlipidemic agents (2011) Eur. J. Med. Chem., 46, pp. 4324-4329 
504 |a Kamiński, K., Obniska, J., Wiklik, B., Atamanyuk, D., Synthesis and anticonvulsant properties of new acetamide derivatives of phthalimide, and its saturated cyclohexane and norbornene analogs (2011) Eur. J. Med. Chem., 46, pp. 4634-4641 
504 |a Akgün, H., Karamelekoğlu, I., Berk, B., Kurnaz, I., Sarıbıyık, G., Öktem, S., Synthesis and antimycobacterial activity of some phthalimide derivatives (2012) Bioorg. Med. Chem., 20, pp. 4149-4154 
504 |a Williams, R., Manka, J.T., Rodriguez, A.L., Vinson, P.N., Niswender, C.M., Weaver, C.D., Synthesis and SAR of centrally active mGlu5 positive allosteric modulators based on an aryl acetylenic bicyclic lactam scaffold (2011) Bioorg. Med. Chem. Lett, 21, pp. 1350-1353 
504 |a Cardoso, M.V.D.O., Moreira, D.R.M., Filho, G.B.O., Cavalcanti, S.M.T., Coelho, L.C.D., Espíndola, J.W.P., Design, synthesis and structure–activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities (2015) Eur. J. Med. Chem., 96, pp. 491-503 
504 |a Pessoa, C., Ferreira, P.M.P., Lotufo, L.V.C., de Moraes, M.O., Cavalcanti, S.M.T., Coêlho, L.C.D., Discovery of phthalimides as immunomodulatory and antitumor drug prototypes (2010) ChemMedChem, 5, pp. 523-528 
504 |a da Costa, P.M., da Costa, M.P., Carvalho, A.A., Cavalcanti, S.M.T., de Oliveira Cardoso, M.V., de Oliveira Filho, G.B., Improvement of in vivo anticancer and antiangiogenic potential of thalidomide derivatives (2015) Chem. Biol. Interact., 239. , 74–183 
504 |a de Santiago, E.F., de Oliveira, S.A., de Oliveira Filho, G.B., Moreira, D.R.M., Gomes, P.A.T., da Silva, A.C.L.A.C.L., Evaluation of the anti-schistosoma mansoni activity of thiosemicarbazones and thiazoles (2014) Antimicrob. Agents Chemother., 58, pp. 352-363 
504 |a de Moraes Gomes, P.A., Oliveira, A.R., de Oliveira Cardoso, M.V., de Farias Santiago, E., de Oliveira Barbosa, M., de Siqueira, L.R., Moreira, D.R., de Oliveira Mendes, A.P., Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi (2016) Eur. J. Med. Chem., 23. , 46–5 
504 |a Lebedev, A.V., Lebedeva, A.B., Sheludyakov, V.D., Kovaleva, E.A., Ustinova, O.L., Kozhevnikov, I.B., Competitive formation of β-amino acids, propenoic, and ylidenemalonic acids by the rodionov reaction from malonic acid, aldehydes, and ammonium acetate in alcoholic medium (2005) Russ. J. Gen. Chem., 75, pp. 1113-1124 
504 |a Ashfaq, M., Synthesis of novel bioactive phthalimido-4-methyl pentanoateorganotin (IV) esters with spectroscopic investigation (2006) J. Organomet. Chem., 691, pp. 1803-1808 
504 |a Watts, A.G., Damager, I., Amaya, M.L., Buschiazzo, A., Alzari, P., Frasch, A.C., Withers, S.G., Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile (2003) J. Am. Chem. Soc., 125, pp. 7532-7533 
504 |a Todeschini, A.R., Mendonça-Previato, L., Previato, J.O., Varki, A., Halbeek, H.V., Trans-sialidase from Trypanosoma cruzi catalyzes sialoside hydrolysis with retention of configuration (2000) Glycobiology, 10, pp. 213-221 
504 |a Agustí, R., París, G., Ratier, L., Frasch, A.C.C., de Lederkremer, R.M., Lactose derivatives are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo (2004) Glycobiology, 14, pp. 659-670 
504 |a Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility (2009) J. Comput. Chem., 16, pp. 2785-2791 
504 |a Trott, O., Olson, A.J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading (2010) J. Comput. Chem., 31, pp. 455-461 
504 |a Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017 (2016), Dassault Systèmes San Diego; Mendoza-Martínez, C., Correa-Basurto, J., Nieto-Meneses, R., Márquez-Navarro, A., Aguilar-Suárez, R., Montero-Cortes, M.D., Nogueda-Torres, B., Rodriguez-Lezama, A., Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents (2015) Eur. J. Med. Chem., 96, pp. 296-307 
504 |a Brener, Z., Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi (1962) Rev. Inst. Med. Trop. Sao Paulo, 6, pp. 389-396 
504 |a Villalobos-Rocha, J.C., Sánchez-Torres, L., Nogueda-Torres, B., Segura-Cabrera, A., García-Pérez, C.A., Bocanegra-García, V., Palos, I., Rivera, G., Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1, 4-di-N-oxide derivatives (2014) J Parasitol Res., 113, pp. 2027-2035 
504 |a Buschiazzo, A., Frasch, A.C., Campetella, O., Medium scale production and purification to homogeneity of a recombinant trans-sialidase from Trypanosoma cruzi (1996) Cell. Mol. Biol., 42, pp. 703-710 
504 |a Cano, M.E., Agusti, R., Cagnoni, A.J., Tesoriero, M.F., Kovensky, J., Uhrig, M.L., de Lederkremer, R.M., Synthesis of divalent ligands of β-thio-and β-N-galactopyranosides and related lactosides and their evaluation as substrates and inhibitors of Trypanosoma cruzi trans-sialidase (2014) Beilstein J. Org. Chem., 10, p. 3073 
520 3 |a In the last two decades, trans-sialidase of Trypanosoma cruzi (TcTS) has been an important pharmacological target for developing new anti-Chagas agents. In a continuous effort to discover new potential TcTS inhibitors, 3-amino-3-arylpropionic acid derivatives (series A) and novel phthaloyl derivatives (series B, C and D) were synthesized and molecular docking, TcTS enzyme inhibition and determination of trypanocidal activity were carried out. From four series obtained, compound D-11 had the highest binding affinity value (−11.1 kcal/mol) compared to reference DANA (−7.8 kcal/mol), a natural ligand for TS enzyme. Furthermore, the 3D and 2D interactions analysis of compound D-11 showed a hydrogen bond, π-π stacking, π-anion, hydrophobic and Van der Waals forces with all important amino acid residues (Arg35, Arg245, Arg314, Tyr119, Trp312, Tyr342, Glu230 and Asp59) on the active site of TcTS. Additionally, D-11 showed the highest TcTS enzyme inhibition (86.9% ± 5) by high-performance ion exchange chromatography (HPAEC). Finally, D-11 showed better trypanocidal activity than the reference drugs nifurtimox and benznidazole with an equal % lysis (63 ± 4 and 65 ± 2 at 10 μg/mL) and LC50 value (52.70 ± 2.70 μM and 46.19 ± 2.36 μM) on NINOA and INC-5 strains, respectively. Therefore, D-11 is a small-molecule with potent TcTS inhibition and a strong trypanocidal effect that could help in the development of new anti-Chagas agents. © 2018 Elsevier Masson SAS  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Ciencia y Tecnología 
536 |a Detalles de la financiación: Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional, SIP-20180306 
536 |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica, CB-2014-01, 241615 
536 |a Detalles de la financiación: Consejo Nacional de Ciencia y Tecnología 
536 |a Detalles de la financiación: Comisión de Operación y Fomento de Actividades Académicas, Instituto Politécnico Nacional 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We wish to express our gratitude to the Consejo Nacional de Ciencia y Tecnología , Mexico ( Proyecto Apoyado por el Fondo Sectorial de Investigación para la Educación , CB-2014-01, 241615 ) and Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional ( SIP-20180306 ) for their financial support. 
536 |a Detalles de la financiación: Muhammad Kashif is the recipient of a scholarship (No. 590887/715369) from Consejo Nacional de Ciencia y Tecnología, Mexico. Gildardo Rivera, Alicia Reyes-Arellano, Esther Ramírez-Moreno and Benjamín Nogueda-Torres hold a scholarship from the “Comisión de Operación y Fomento de Actividades Académicas” (COFAA-IPN) and the “Programa de Estímulos al Desempeño de los Investigadores” (EDI-IPN) . We thank Oscar Campetella and his group from the Universidad Nacional General San Martín (UNSAM) Argentina , for their kind gift of trans-sialidase from T. cruzi . Support for this work from the Universidad de Buenos Aires , the CONICET and the ANPCyT is gratefully acknowledged. RA and MLU are research members of the CONICET. Appendix A 
593 |a Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, 88700, Mexico 
593 |a Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Ciudad de México, 07320, Mexico 
593 |a Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, 07320, Mexico 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EG, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina 
593 |a Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Ciudad de México, 07320, Mexico 
593 |a Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan 
690 1 0 |a INHIBITORS 
690 1 0 |a MOLECULAR DOCKING 
690 1 0 |a PHTHALOYL 
690 1 0 |a PROPIONIC ACID 
690 1 0 |a TRANS-SIALIDASE 
690 1 0 |a TRYPANOSOMA CRUZI 
690 1 0 |a 2 [2 CARBOXY 1 (2 NITROPHENYL)ETHYL] 1,3 DIOXOISOINDOLINE 5 CARBOXYLIC ACID 
690 1 0 |a 2 [2 CARBOXY 1 (4 ETHYLPHENYL)ETHYL] 1,3 DIOXOISOINDOLINE 5 CARBOXYLIC ACID 
690 1 0 |a 2 [2 CARBOXY 1 (4 HYDROXYPHENYL)ETHYL] 1,3 DIOXOISOINDOLINE 5 CARBOXYLIC ACID 
690 1 0 |a 2 [2 CARBOXY 1 (4 METHOXYPHENYL)ETHYL] 1,3 DIOXOISOINDOLINE 5 CARBOXYLIC ACID 
690 1 0 |a 2 [2 CARBOXY 1 (4 NITROPHENYL)ETHYL] 1,3 DIOXOISOINDOLINE 5 CARBOXYLIC ACID 
690 1 0 |a 2 [2 CARBOXY 1 (4 TOLYL)ETHYL] 1,3 DIOXOISOINDOLINE 5 CARBOXYLIC ACID 
690 1 0 |a 3 (1,3 DIOXOISOINDOLIN 2 YL) 3 (4 ETHYLPHENYL)PROPANOIC ACID 
690 1 0 |a 3 (1,3 DIOXOISOINDOLIN 2 YL) 3 (4 HYDROXYPHENYL)PROPANOIC ACID 
690 1 0 |a 3 (1,3 DIOXOISOINDOLIN 2 YL) 3 (4 METHOXYPHENYL)PROPANOIC ACID 
690 1 0 |a 3 (1,3 DIOXOISOINDOLIN 2 YL) 3 (4 NITROPHENYL)PROPANOIC ACID 
690 1 0 |a 3 (1,3 DIOXOISOINDOLIN 2 YL) 3 (4 TOLYL)PROPANOIC ACID 
690 1 0 |a 3 (4 ETHYLPHENYL) 3 (5 METHYL 1,3 DIOXOISOINDOLIN 2 YL)PROPANOIC ACID 
690 1 0 |a 3 (4 HYDROXYPHENYL) 3 (5 METHYL 1,3 DIOXOISOINDOLIN 2 YL)PROPANOIC ACID 
690 1 0 |a 3 (4 METHOXYPHENYL) 3 (5 METHYL 1,3 DIOXOISOINDOLIN 2 YL)PROPANOIC ACID 
690 1 0 |a 3 (5 METHYL 1,3 DIOXOISOINDOLIN 2 YL) 3 (4 NITROPHENYL)PROPANOIC ACID 
690 1 0 |a 3 (5 METHYL 1,3 DIOXOISOINDOLIN 2 YL) 3 (4 TOLYL)PROPANOIC ACID 
690 1 0 |a 3 (5 METHYL 1,3 DIOXOISOINDOLIN 2 YL) 3 (NAPHTHALEN 2 YL)PROPANOIC ACID 
690 1 0 |a 3 AMINO 3 (4 ETHYLPHENYL)PROPANOIC ACID 
690 1 0 |a 3 AMINO 3 (4 HYDROXYPHENYL)PROPANOIC ACID 
690 1 0 |a 3 AMINO 3 (4 METHOXYPHENYL)PROPANOIC ACID 
690 1 0 |a 3 AMINO 3 (4 NITROPHENYL)PROPANOIC ACID 
690 1 0 |a 3 AMINO 3 (4 TOLYL)PROPANOIC ACID 
690 1 0 |a 3 DEOXY 2,3 DIDEHYDRO N ACETYLNEURAMINIC ACID 
690 1 0 |a ANTITRYPANOSOMAL AGENT 
690 1 0 |a BENZNIDAZOLE 
690 1 0 |a NIFURTIMOX 
690 1 0 |a PHTHALOYL DERIVATIVE 
690 1 0 |a PROPIONIC ACID DERIVATIVE 
690 1 0 |a SIALIDASE INHIBITOR 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a UNINDEXED DRUG 
690 1 0 |a ANTITRYPANOSOMAL AGENT 
690 1 0 |a GLYCOPROTEIN 
690 1 0 |a PROPIONIC ACID DERIVATIVE 
690 1 0 |a SIALIDASE 
690 1 0 |a TRANS-SIALIDASE 
690 1 0 |a ARTICLE 
690 1 0 |a BIOLOGICAL ACTIVITY 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CRYSTAL STRUCTURE 
690 1 0 |a DRUG STRUCTURE 
690 1 0 |a DRUG SYNTHESIS 
690 1 0 |a ENZYME INHIBITION 
690 1 0 |a HYDROGEN BOND 
690 1 0 |a ION EXCHANGE CHROMATOGRAPHY 
690 1 0 |a LC50 
690 1 0 |a LYSIS 
690 1 0 |a MOLECULAR DOCKING 
690 1 0 |a NONHUMAN 
690 1 0 |a SIALYLATION 
690 1 0 |a TRYPANOSOMA CRUZI 
690 1 0 |a AMINATION 
690 1 0 |a ANTAGONISTS AND INHIBITORS 
690 1 0 |a CHAGAS DISEASE 
690 1 0 |a CHEMISTRY 
690 1 0 |a DRUG DESIGN 
690 1 0 |a DRUG EFFECT 
690 1 0 |a ENZYMOLOGY 
690 1 0 |a HUMAN 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULAR DOCKING 
690 1 0 |a PARASITOLOGY 
690 1 0 |a STRUCTURE ACTIVITY RELATION 
690 1 0 |a TRYPANOSOMA CRUZI 
690 1 0 |a AMINATION 
690 1 0 |a CHAGAS DISEASE 
690 1 0 |a DRUG DESIGN 
690 1 0 |a GLYCOPROTEINS 
690 1 0 |a HUMANS 
690 1 0 |a MOLECULAR DOCKING SIMULATION 
690 1 0 |a NEURAMINIDASE 
690 1 0 |a PROPIONATES 
690 1 0 |a STRUCTURE-ACTIVITY RELATIONSHIP 
690 1 0 |a TRYPANOCIDAL AGENTS 
690 1 0 |a TRYPANOSOMA CRUZI 
700 1 |a Chacón-Vargas, K.F. 
700 1 |a López-Cedillo, J.C. 
700 1 |a Nogueda-Torres, B. 
700 1 |a Paz-González, A.D. 
700 1 |a Ramírez-Moreno, E. 
700 1 |a Agusti, R. 
700 1 |a Uhrig, M.L. 
700 1 |a Reyes-Arellano, A. 
700 1 |a Peralta-Cruz, J. 
700 1 |a Ashfaq, M. 
700 1 |a Rivera, G. 
773 0 |d Elsevier Masson SAS, 2018  |g v. 156  |h pp. 252-268  |p Eur. J. Med. Chem.  |x 02235234  |w (AR-BaUEN)CENRE-4668  |t European Journal of Medicinal Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049568232&doi=10.1016%2fj.ejmech.2018.07.005&partnerID=40&md5=639ab5208f82cc4559930a36be7d3b0f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ejmech.2018.07.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02235234_v156_n_p252_Kashif  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02235234_v156_n_p252_Kashif  |y Registro en la Biblioteca Digital 
961 |a paper_02235234_v156_n_p252_Kashif  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86060