Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study

Since peroxynitrite was identified as a pathophysiological agent it has been implicated in a great variety of cellular processes. Particularly, peroxynitrite mediated oxidation of cellular thiol-containing compounds such as Cys residues, is a key event which has been extensively studied. Although gr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zeida, A.
Otros Autores: González Lebrero, M.C, Radi, R., Trujillo, M., Estrin, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11877caa a22015377a 4500
001 PAPER-24170
003 AR-BaUEN
005 20230518205559.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84884939103 
024 7 |2 cas  |a cysteine, 4371-52-2, 52-89-1, 52-90-4; nitrite, 14797-65-0; oxygen, 7782-44-7; peroxynitrous acid, 14691-52-2; Cysteine, K848JZ4886; Fluorides, Q80VPU408O; Peroxynitrous Acid, 14691-52-2; Polyethylenes; Resins, Synthetic; Thermelect 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ABBIA 
100 1 |a Zeida, A. 
245 1 0 |a Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study 
260 |c 2013 
270 1 0 |m Trujillo, M.; Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay; email: madiat@fmed.edu.uy 
506 |2 openaire  |e Política editorial 
504 |a Poole, L.B., Nelson, K.J., (2008) Curr. Opin. Chem. Biol., 12, pp. 18-24 
504 |a Bindoli, A., Fukuto, J.M., Forman, H.J., (2008) Antioxid. Redox Signal., 10, pp. 1549-1564 
504 |a Poole, L.B., Karplus, P.A., Claiborne, A., (2004) Annu. Rev. Pharmacol. Toxicol., 44, pp. 325-347 
504 |a Claiborne, A., Yeh, J.I., Mallett, T.C., Luba, J., Crane, E.J., Parsonage, D., (1999) Biochemistry, 38, pp. 15407-15416 
504 |a Schulz, J.B., Lindenau, J., Seyfried, J., Dichgans, J., (2000) Eur. J. Biochem., 267, pp. 4904-4911 
504 |a Go, Y.M., Jones, D.P., (2011) Free Radic. Biol. Med., 4, pp. 495-509 
504 |a Goldstein, S., Czapski, G., (1995) Free Radic. Biol. Med., 19, pp. 505-510 
504 |a Kissner, R., Nauser, T., Bugnon, P., Lye, P.G., Koppenol, W.H., (1997) Chem. Res. Toxicol., 10, pp. 1285-1292 
504 |a Pryor, W.A., Squadrito, G.L., (1995) Am. J. Physiol., 268, pp. 699-722 
504 |a Gerasimov, O.V., Lymar, S.V., (1999) Inorg. Chem., 38, pp. 4317-4321 
504 |a Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A., (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 1620-1624 
504 |a Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J.C., Smith, C.D., Beckman, J.S., (1992) Arch. Biochem. Biophys., 298, pp. 431-437 
504 |a Radi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., (1991) Arch. Biochem. Biophys., 288, pp. 481-487 
504 |a Radi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., (1991) J. Biol. Chem., 266, pp. 4244-4250 
504 |a Ferrer-Sueta, G., Radi, R., (2009) ACS Chem. Biol., 4, pp. 161-177 
504 |a Pacher, P., Beckman, J.S., Liaudet, L., (2007) Physiol. Rev., 87, pp. 315-424 
504 |a Koppenol, W.H., Moreno, J.J., Pryor, W.A., Ischiropoulos, H., Beckman, J.S., (1992) Chem. Res. Toxicol., 5, pp. 834-842 
504 |a Trujillo, M., Radi, R., (2002) Arch. Biochem. Biophys., 397, pp. 91-98 
504 |a Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., Radi, R., (2007) Arch. Biochem. Biophys., 467, pp. 95-106 
504 |a Dubuisson, M., Vander Stricht, D., Clippe, A., Etienne, F., Nauser, T., Kissner, R., Koppenol, W.H., Knoops, B., (2004) FEBS Lett., 571, pp. 161-165 
504 |a Souza, J.M., Radi, R., (1998) Arch. Biochem. Biophys., 360, pp. 187-194 
504 |a Trujillo, M., Alvarez, B., Souza, J.M., Romero, N., Castro, L., Thomson, L., Radi, R., (2010) Nitric Oxide Biology and Pathobiology, pp. 61-402. , L. Ignarro, Academic Press California 
504 |a Zeida, A., Babbush, R., González Lebrero, M.C., Trujillo, M., Rafael Radi, R., Estrin, D.A., (2012) Chem. Res. Toxicol., 25, pp. 741-746 
504 |a Alvarez, B., Demicheli, V., Durán, R., Trujillo, M., Cerveñansky, C., Freeman, B.A., Radi, R., (2004) Free Radic. Biol. Med., 37, pp. 813-822 
504 |a Ellman, G.L., (1959) Arch. Biochem. Biophys., 82, pp. 70-77 
504 |a (2004) Gaussian 03, , Gaussian, Inc.: Wallingford, CT 
504 |a Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., (1992) Can. J. Chem., 70, pp. 560-571 
504 |a Bayly, C.I., Cieplak, P., Cornell, W.D., Kollman, P.A., A well-behaved electrostatic potential based method using charge restraints for determining atom-centered charges: The RESP model (1993) J. Phys. Chem., 97, pp. 10269-10280 
504 |a González Lebrero, M.C., Bikiel, D.E., Elola, M.D., Estrin, D.A., Roitberg, A.E., (2002) J. Chem. Phys., 117, pp. 2718-2725 
504 |a González Lebrero, M.C., Estrin, D.A., (2007) J. Chem. Theory Comput., 3, pp. 1405-1411 
504 |a Case, D.A., (2010) AMBER 11, , University of California San Francisco 
504 |a Humphrey, W., Dalke, A., Schulten, K., (1996) J. Mol. Graphics, 14, pp. 33-38 
504 |a Alvarez, B., Ferrer-Sueta, G., Freeman, B.A., Radi, R., (1999) J. Biol. Chem., 274, pp. 842-848 
504 |a Bryk, R., Griffin, P., Nathan, C., (2000) Nature, 407, pp. 211-215 
504 |a Torchinsky, M.Y., (1981) Sulfur in Proteins, pp. 3-18. , M.Y. Torchinsky, Pergamon Press New York 
504 |a Koppenol, W.H., Kissner, R., (1998) Chem. Res. Toxicol., 2, pp. 87-90 
504 |a Low, P.S., Bada, J.L., Somero, G.N., (1973) Proc. Natl. Acad. Sci. USA, 70, pp. 430-432 
504 |a Jursic, B.S., Klasnic, L., Pecur, S., Pryor, W.A., (1997) Nitric Oxide, 1, pp. 494-501 
504 |a Bach, R.D., Glukhovtsev, M.N., Canepa, C., (1998) J. Am. Chem. Soc., 120, pp. 775-783 
504 |a Dixon, D.A., Feller, D., Zhan, C.-G., Francisco, J.S., (2002) J. Phys. Chem. A, 106, pp. 3191-3196 
504 |a Musaev, D.G., Hirao, K., (2003) J. Phys. Chem. A, 107, pp. 1563-1573 
504 |a González Lebrero, M.C., Perissinotti, L.L., Estrin, D.A., (2005) J. Phys. Chem. A, 109, pp. 9598-9604 
504 |a Cardey, B., Enescu, M., (2005) ChemPhysChem, 6, pp. 1175-1180 
504 |a Cardey, B., Enescu, M., (2007) J. Phys. Chem. A, 111, pp. 673-678 
504 |a Doclo, K., Rothlisberger, U., (2000) J. Phys. Chem. A, 104, pp. 6464-6469 
504 |a Trujillo, M., Budde, H., Piñeyro, M.D., Stehr, M., Robello, C., Flohé, L., Radi, R., (2004) J. Biol. Chem., 279, pp. 34175-34182 
504 |a Konorev, E.A., Hogg, N., Kalyanaraman, B., (1998) FEBS Lett., 427, pp. 171-174 
504 |a Hall, A., Parsonage, D., Poole, L.B., Karplus, P.A., (2010) J. Mol. Biol., 402, pp. 194-209 
504 |a Karplus, P.A., Hall, A., Structural survey of the peroxiredoxins: Structures and functions (2007) Peroxiredoxins Systems, pp. 41-60. , L. Flohe, J.R. Harris, Springer New York 
504 |a Hall, A., Nelson, K., Poole, L.B., Karplus, P.A., (2011) Antioxid. Redox Signal., 15, pp. 795-815 
520 3 |a Since peroxynitrite was identified as a pathophysiological agent it has been implicated in a great variety of cellular processes. Particularly, peroxynitrite mediated oxidation of cellular thiol-containing compounds such as Cys residues, is a key event which has been extensively studied. Although great advances have been accomplished, the reaction is not completely understood at the atomic level. Aiming to shed light on this subject, we present an integrated kinetic and theoretical study of the oxidation of free Cys by peroxynitrite. We determined pH-independent thermodynamic activation parameters, namely those corresponding to the reaction between the reactive species: Cys thiolate and peroxynitrous acid. We found a pH-independent activation energy of 8.2 ± 0.6 kcal/mol. Simulations were performed using state of the art hybrid quantum-classical (QM-MM) molecular dynamics simulations. Our results are consistent with a SN2 mechanism, with Cys sulfenic acid and nitrite anion as products. The activation barrier is mostly due to the alignment of sulfur's thiolate atom with the oxygen atoms of the peroxide, along with the concomitant charge reorganization and important changes in the solvation profile. This work provides an atomic detailed description of the reaction mechanism and a framework to understand the environment effects on peroxynitrite reactivity with protein thiols. © 2013 Elsevier Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Universidad de la República Uruguay 
536 |a Detalles de la financiación: Agencia Nacional de Investigación e Innovación 
536 |a Detalles de la financiación: Comisión de Investigaciones Científicas 
536 |a Detalles de la financiación: National Institutes of Health, RO1 AI095173 
536 |a Detalles de la financiación: MT 
536 |a Detalles de la financiación: Agencia Nacional de Investigación e Innovación, FCE_2011_1_5706 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was partially supported by the University of Buenos Aires, CONICET and Centro de Biología Estructural Mercosur (CEBEM). The calculations have been performed in FCEN CECAR and MINCyT Cristina computer centers. MT and RR acknowledge the financial support of the Agencia Nacional de Investigación e Innovación (FCE_2011_1_5706, ANII, Uruguay), Comisión Sectorial de Investigación Científica (CSIC), Universidad de la República and the National Institutes of Health (RO1 AI095173). Appendix A 
593 |a Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a IQUIFIB-Dpto. Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay 
690 1 0 |a CYSTEINE 
690 1 0 |a OXIDATION 
690 1 0 |a PEROXYNITRITE 
690 1 0 |a REDOX HOMEOSTASIS 
690 1 0 |a SN2 
690 1 0 |a THIOLS 
690 1 0 |a CYSTEINE 
690 1 0 |a NITRITE 
690 1 0 |a OXYGEN 
690 1 0 |a PEROXYNITRITE 
690 1 0 |a PEROXYNITROUS ACID 
690 1 0 |a ARTICLE 
690 1 0 |a ATOM 
690 1 0 |a EXPERIMENTAL STUDY 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a OXIDATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a QUANTUM MECHANICS 
690 1 0 |a REACTION ANALYSIS 
690 1 0 |a THEORETICAL STUDY 
690 1 0 |a CYSTEINE 
690 1 0 |a OXIDATION 
690 1 0 |a PEROXYNITRITE 
690 1 0 |a REDOX HOMEOSTASIS 
690 1 0 |a S(N)2 
690 1 0 |a THIOLS 
690 1 0 |a CYSTEINE 
690 1 0 |a FLUORIDES 
690 1 0 |a KINETICS 
690 1 0 |a MOLECULAR CONFORMATION 
690 1 0 |a MOLECULAR DYNAMICS SIMULATION 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a PEROXYNITROUS ACID 
690 1 0 |a POLYETHYLENES 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a RESINS, SYNTHETIC 
650 1 7 |2 spines  |a PH 
700 1 |a González Lebrero, M.C. 
700 1 |a Radi, R. 
700 1 |a Trujillo, M. 
700 1 |a Estrin, D.A. 
773 0 |d 2013  |g v. 539  |h pp. 81-86  |k n. 1  |p Arch. Biochem. Biophys.  |x 00039861  |w (AR-BaUEN)CENRE-1377  |t Archives of Biochemistry and Biophysics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884939103&doi=10.1016%2fj.abb.2013.08.016&partnerID=40&md5=b99e374218b9864bc5a856b58a414f00  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.abb.2013.08.016  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00039861_v539_n1_p81_Zeida  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00039861_v539_n1_p81_Zeida  |y Registro en la Biblioteca Digital 
961 |a paper_00039861_v539_n1_p81_Zeida  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85123