Theoretical investigation of the mechanism of nitroxyl decomposition in aqueous solution

Nitroxyl (HNO) is a species that has been proposed recently to play different roles in nitrosative stress processes. HNO decomposition in aqueous solution leading to N2O is a fast reaction that competes with many biochemical reactions in which HNO may be involved. Since molecular determinants of thi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bringas, M.
Otros Autores: Semelak, J., Zeida, A., Estrin, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Inc. 2016
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11646caa a22012857a 4500
001 PAPER-15765
003 AR-BaUEN
005 20230518204634.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84994000080 
024 7 |2 cas  |a nitrous oxide, 10024-97-2; nitrogen oxide, 11104-93-1; water, 7732-18-5; Nitrogen Oxides; Nitrous Oxide; nitroxyl; Solutions; Water 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JIBID 
100 1 |a Bringas, M. 
245 1 0 |a Theoretical investigation of the mechanism of nitroxyl decomposition in aqueous solution 
260 |b Elsevier Inc.  |c 2016 
270 1 0 |m Estrin, D.A.; DQIAyQF, INQUIMAE-CONICET, FCEN UBA, Ciudad Universitaria, Pab. 2, CP, Argentina; email: dario@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Miranda, K.M., The chemistry of nitroxyl (HNO) and implications in biology (2005) Coord. Chem. Rev., 249 (3), pp. 433-455 
504 |a Doctorovich, F., Bikiel, D., Pellegrino, J., Suárez, S.A., Larsen, A., Martí, M.A., Nitroxyl (azanone) trapping by metalloporphyrins (2011) Coord. Chem. Rev., 255 (23), pp. 2764-2784 
504 |a Zhang, Y., Computational investigations of HNO in biology (2013) J. Inorg. Biochem., 118, pp. 191-200 
504 |a DeMaster, E.C., Shirota, F.N., Nagasawa, H.T., The metabolic activation of cyanamide to an inhibitor of aldehyde dehydrogenase is catalyzed by catalase (1984) Biochem. Biophys. Res. Commun., 122 (1), pp. 358-365 
504 |a DeMaster, E.G., Nagasawa, H., Shirota, F., Metabolic activation of cyanamide to an inhibitor of aldehyde dehydrogenase in vitro (1983) Pharmacol. Biochem. Behav., 18, pp. 273-277 
504 |a DeMaster, E.G., Shirota, F.N., Nagasawa, H.T., Catalase mediated conversion of cyanamide to an inhibitor of aldehyde dehydrogenase (1985) Alcohol, 2 (1), pp. 117-121 
504 |a DeMaster, E.G., Redfern, B., Nagasawa, H.T., Mechanisms of inhibition of aldehyde dehydrogenase by nitroxyl, the active metabolite of the alcohol deterrent agent cyanamide (1998) Biochem. Pharmacol., 55 (12), pp. 2007-2015 
504 |a Reisz, J.A., Bechtold, E., King, S.B., Oxidative heme protein-mediated nitroxyl (HNO) generation (2010) Dalton Trans., 39 (22), pp. 5203-5212 
504 |a Ma, X.L., Gao, F., Liu, G.-L., Lopez, B.L., Christopher, T.A., Fukuto, J.M., Wink, D.A., Feelisch, M., Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury (1999) Proc. Natl. Acad. Sci., 96 (25), pp. 14617-14622 
504 |a Miranda, K.M., Katori, T., Torres de Holding, C.L., Thomas, L., Ridnour, L.A., McLendon, W.J., Cologna, S.M., Mancardi, D., Comparison of the NO and HNO donating properties of diazeniumdiolates: primary amine adducts release HNO in vivo (2005) J. Med. Chem., 48 (26), pp. 8220-8228 
504 |a Shafirovich, V., Lymar, S.V., Nitroxyl and its anion in aqueous solutions: spin states, protic equilibria, and reactivities toward oxygen and nitric oxide (2002) Proc. Natl. Acad. Sci., 99 (11), pp. 7340-7345 
504 |a Miranda, K.M., Nagasawa, H.T., Toscano, J.P., Donors of HNO (2005) Curr. Top. Med. Chem., 5 (7), pp. 649-664 
504 |a Angeli, A., Sopra la nitroidrossilammina (1896) Gazz. Chim. Ital., 26, pp. 17-25 
504 |a Angeli, A., Angelico, F., Nitrohydroxylaminic acid (1903) Gazz. Chim. Ital., 33, pp. 245-252 
504 |a Piloty, O., Ueber eine oxydation des hydroxylamins durch benzolsulfochlorid (1896) Ber. Dtsch. Chem. Ges., 29 (2), pp. 1559-1567 
504 |a Wilkins, P.C., Jacobs, H.K., Johnson, M.D., Gopalan, A.S., Mechanistic variations in the oxidation of piloty's acid by metal complexes (2004) Inorg. Chem., 43 (24), pp. 7877-7881 
504 |a Porcheddu, A., De Luca, L., Giacomelli, G., A straightforward route to pilotys acid derivatives: A class of potential nitroxyl-generatingprodrugs (2009) Synlett, 2009 (13), pp. 2149-2153 
504 |a Strausz, O., Gunning, H., Reaction of hydrogen atoms with nitric oxide (1964) Trans. Faraday Soc., 60, pp. 347-358 
504 |a Kohout, F., Lampe, F., On the role of the nitroxyl molecule in the reaction of hydrogen atoms with nitric oxide (1965) J. Am. Chem. Soc., 87 (24), pp. 5795-5796 
504 |a Fehling, C., Friedrichs, G., Dimerization of HNO in aqueous solution: An interplay of solvation effects, fast Acid–Base equilibria, and intramolecular hydrogen bonding? (2011) J. Am. Chem. Soc., 133 (44), pp. 17912-17922 
504 |a Lin, M., He, Y., Melius, C., Theoretical interpretation of the kinetics and mechanisms of the HNO + HNO and HNO + 2NO reactions with a unified model (1992) In. J. Chem. Kinet., 24 (5), pp. 489-516 
504 |a Ruud, K., Helgaker, T., Uggerud, E., Mechanisms, energetics and dynamics of a key reaction sequence during the decomposition of nitromethane: HNO + HNO → N2O + H2O (1997) J. Mol. Struct. THEOCHEM, 393 (1), pp. 59-71 
504 |a Lymar, S.V., Shafirovich, V., Photoinduced release of nitroxyl and nitric oxide from diazeniumdiolates (2007) J. Phys. Chem. B, 111 (24), pp. 6861-6867 
504 |a Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Petersson, G., Gaussian 09 (2009), Gaussian, Inc. Wallingford, CT; Rosenbergl, J.M., The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method (1992) J. Comput. Chem., 13 (8), pp. 1011-1021 
504 |a Tomasi, J., Mennucci, B., Cammi, R., Quantum mechanical continuum solvation models (2005) Chem. Rev., 105 (8), pp. 2999-3094 
504 |a Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation (1992) Can. J. Chem., 70 (2), pp. 560-571 
504 |a Westheimer, F., The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium (1961) Chem. Rev., 61 (3), pp. 265-273 
504 |a Nitsche, M.A., Ferreria, M., Mocskos, E.E., Lebrero, M.C.G., GPU accelerated implementation of density functional theory for hybrid QM/MM simulations (2014) J. Chem. Theory Comput., 10 (3), pp. 959-967 
504 |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79 (2), pp. 926-935 
504 |a Berendsen, H.J., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys., 81 (8), pp. 3684-3690 
504 |a Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14 (1), pp. 33-38 
504 |a Buchholz, J.R., Powell, R.E., The decomposition of hyponitrous acid. I. The non-chain reaction (1963) J. Am. Chem. Soc., 85 (5), pp. 509-511 
504 |a Bazylinski, D.A., Hollocher, T.C., Evidence from the reaction between trioxodinitrate (II) and nitrogen-15-labeled nitric oxide that trioxodinitrate (II) decomposes into nitrosyl hydride and nitrite in neutral aqueous solution (1985) Inorg. Chem., 24 (25), pp. 4285-4288 
504 |a Graetzel, M., Taniguchi, S., Henglein, A., Pulse radiolytic study of short-lived by-products of nitric oxide-reduction in aqueous solution (1970) Ber. Bunsen Ges., 74 (1), pp. 1003-1010 
520 3 |a Nitroxyl (HNO) is a species that has been proposed recently to play different roles in nitrosative stress processes. HNO decomposition in aqueous solution leading to N2O is a fast reaction that competes with many biochemical reactions in which HNO may be involved. Since molecular determinants of this reaction are still not fully understood, we present in this work an exhaustive analysis of the mechanism in terms of electronic-structure calculations as well as state of the art hybrid quantum mechanics/molecular mechanics molecular dynamics simulations. We characterized the reaction mechanism and computed free energy profiles for the reaction steps using an umbrella sampling procedure. We propose a first dimerization step followed by an acid-base equilibria. Afterwards, the product is formed from two main pathways involving cis-hyponitrous acid (cis-HONNOH) and its conjugate basis as intermediate. Our calculations show preference for the anionic pathway under physiological conditions and allow us to rationalize the results in terms of a molecular description of specific interactions with the solvent. These interactions turn out to be determinant in the stabilization of transition states and, thereby, modifying the free energy barriers. We predict a strong pH-dependence of the overall kinetics of N2O formation, related with the fraction of reactive species available in solution. Finally, we suggest experimental procedures which could validate this mechanism. © 2016 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PICT 2012-1266, PICT 2014-1022 
536 |a Detalles de la financiación: This work was supported by the Universidad de Buenos Aires ( 20020130100097BA UBACyT grant) and CONICET ( PICT 2012-1266 and PICT 2014-1022 grants). Appendix A 
593 |a DQIAyQF, INQUIMAE-CONICET, FCEN UBA, Ciudad Universitaria, Pab. 2, CP, Buenos Aires, 1428, Argentina 
690 1 0 |a AQUEOUS DECOMPOSITION 
690 1 0 |a MECHANISM 
690 1 0 |a NITROXYL 
690 1 0 |a QM/MM 
690 1 0 |a REACTIVE NITROGEN SPECIES 
690 1 0 |a NITROUS OXIDE 
690 1 0 |a NITROXYL 
690 1 0 |a REACTIVE NITROGEN SPECIES 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a NITROGEN OXIDE 
690 1 0 |a NITROXYL 
690 1 0 |a SOLUTION AND SOLUBILITY 
690 1 0 |a WATER 
690 1 0 |a AQUEOUS SOLUTION 
690 1 0 |a ARTICLE 
690 1 0 |a CALCULATION 
690 1 0 |a DECOMPOSITION 
690 1 0 |a DIMERIZATION 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a NITROSATIVE STRESS 
690 1 0 |a PREDICTIVE VALUE 
690 1 0 |a QUANTUM MECHANICS 
690 1 0 |a STRUCTURE ANALYSIS 
690 1 0 |a THEORETICAL STUDY 
690 1 0 |a CHEMISTRY 
690 1 0 |a ELECTRON 
690 1 0 |a KINETICS 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a SOLUTION AND SOLUBILITY 
690 1 0 |a THERMODYNAMICS 
690 1 0 |a DIMERIZATION 
690 1 0 |a ELECTRONS 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a KINETICS 
690 1 0 |a MOLECULAR DYNAMICS SIMULATION 
690 1 0 |a NITROGEN OXIDES 
690 1 0 |a NITROUS OXIDE 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a SOLUTIONS 
690 1 0 |a THERMODYNAMICS 
690 1 0 |a WATER 
650 1 7 |2 spines  |a PH 
700 1 |a Semelak, J. 
700 1 |a Zeida, A. 
700 1 |a Estrin, D.A. 
773 0 |d Elsevier Inc., 2016  |g v. 162  |h pp. 102-108  |p J. Inorg. Biochem.  |x 01620134  |w (AR-BaUEN)CENRE-818  |t Journal of Inorganic Biochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994000080&doi=10.1016%2fj.jinorgbio.2016.06.016&partnerID=40&md5=bab771f5c40b090ccd0f12e1ff89ed3d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jinorgbio.2016.06.016  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01620134_v162_n_p102_Bringas  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01620134_v162_n_p102_Bringas  |y Registro en la Biblioteca Digital 
961 |a paper_01620134_v162_n_p102_Bringas  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76718