PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase

Mycobacterium tuberculosis (M. tuberculosis) is the intracellular bacterium responsible for tuberculosis disease (TD). Inside the phagosomes of activated macrophages, M. tuberculosis is exposed to cytotoxic hydroperoxides such as hydrogen peroxide, fatty acid hydroperoxides and peroxynitrite. Thus,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Reyes, A.M
Otros Autores: Vazquez, D.S, Zeida, A., Hugo, M., Piñeyro, M.D, De Armas, M.I, Estrin, D., Radi, R., Santos, J., Trujillo, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Inc. 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 26803caa a22025217a 4500
001 PAPER-15524
003 AR-BaUEN
005 20230518204616.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84994291367 
024 7 |2 cas  |a deoxycholate sodium, 302-95-4; oxidoreductase, 9035-73-8, 9035-82-9, 9037-80-3, 9055-15-6; thioredoxin, 52500-60-4; aldehyde dehydrogenase, 37353-37-0, 9028-86-8; hydrogen peroxide, 7722-84-1; peroxiredoxin, 207137-51-7; Aldehyde Oxidoreductases; Bacterial Proteins; fatty acid reductase; Fatty Acids; Hydrogen Peroxide; Peroxiredoxins; Recombinant Proteins; Thioredoxins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FRBME 
100 1 |a Reyes, A.M. 
245 1 0 |a PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase 
260 |b Elsevier Inc.  |c 2016 
270 1 0 |m Trujillo, M.; Departamento de Bioquímica, Facultad de Medicina, Universidad de la RepúblicaUruguay; email: madiat@fmed.edu.uy 
506 |2 openaire  |e Política editorial 
504 |a Leibert, E., Danckers, M., Rom, W.N., New drugs to treat multidrug-resistant tuberculosis: the case for bedaquiline (2014) Ther. Clin. Risk Manag., 10, pp. 597-602 
504 |a Nathan, C., Shiloh, M.U., Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 8841-8848 
504 |a Shiloh, M.U., Nathan, C.F., Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria (2000) Curr. Opin. Microbiol., 3, pp. 35-42 
504 |a Hugo, M.R.R., Trujillo, M., Thiol-dependent peroxidases in Mycobacterium tuberculosis antioxidant defense (2011) Understanding Tuberculosis – Deciphering the Secret Life of the Bacilli, pp. 293-316. , P.-J. Cardona InTech Croatia 
504 |a Alvarez, M.N., Peluffo, G., Piacenza, L., Radi, R., Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity (2011) J. Biol. Chem., 286, pp. 6627-6640 
504 |a Cole, S.T., Barrell, B.G., Analysis of the genome of Mycobacterium tuberculosis H37Rv (1998) Novartis Found. Symp. 217, pp. 160-172. , (discussion 172-167) 
504 |a Rhee, S.G., Woo, H.A., Kil, I.S., Bae, S.H., Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides (2012) J. Biol. Chem., 287, pp. 4403-4410 
504 |a Trujillo, M., Ferrer-Sueta, G., Thomson, L., Flohe, L., Radi, R., Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite (2007) Subcell. Biochem., 44, pp. 83-113 
504 |a Lew, J.M., Kapopoulou, A., Jones, L.M., Cole, S.T., TubercuList-−10 years after (2011) Tuberculosis, 91, pp. 1-7 
504 |a Perkins, A., Gretes, M.C., Nelson, K.J., Poole, L.B., Karplus, P.A., Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes (2012) Biochemistry, 51, pp. 7638-7650 
504 |a Gu, S., Chen, J., Dobos, K.M., Bradbury, E.M., Belisle, J.T., Chen, X., Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain (2003) Mol. Cell Proteom., 2, pp. 1284-1296 
504 |a Mawuenyega, K.G., Forst, C.V., Dobos, K.M., Belisle, J.T., Chen, J., Bradbury, E.M., Bradbury, A.R., Chen, X., Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling (2005) Mol. Biol. Cell, 16, pp. 396-404 
504 |a Malen, H., Pathak, S., Softeland, T., de Souza, G.A., Wiker, H.G., Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv (2010) BMC Microbiol., 10, p. 132 
504 |a de Souza, G.A., Arntzen, M.O., Fortuin, S., Schurch, A.C., Malen, H., McEvoy, C.R., van Soolingen, D., Wiker, H.G., Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database (2011) Mol. Cell Proteom., 10 (M110), p. 002527 
504 |a Griffin, J.E., Gawronski, J.D., Dejesus, M.A., Ioerger, T.R., Akerley, B.J., Sassetti, C.M., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism (2011) PLoS Pathog., 7, p. e1002251 
504 |a Van der Geize, R., Yam, K., Heuser, T., Wilbrink, M.H., Hara, H., Anderton, M.C., Sim, E., Eltis, L.D., A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 1947-1952 
504 |a Poole, L.B., The catalytic mechanism of peroxiredoxins (2007) Subcell. Biochem., 44, pp. 61-81 
504 |a Clarke, D.J., Ortega, X.P., Mackay, C.L., Valvano, M.A., Govan, J.R., Campopiano, D.J., Langridge-Smith, P., Brown, A.R., Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity (2010) Biochemistry, 49, pp. 1319-1330 
504 |a Horta, B.B., de Oliveira, M.A., Discola, K.F., Cussiol, J.R., Netto, L.E., Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity (2010) J. Biol. Chem., 285, pp. 16051-16065 
504 |a Rouhier, N., Gelhaye, E., Gualberto, J.M., Jordy, M.N., De Fay, E., Hirasawa, M., Duplessis, S., Jacquot, J.P., Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense (2004) Plant Physiol., 134, pp. 1027-1038 
504 |a Reeves, S.A., Parsonage, D., Nelson, K.J., Poole, L.B., Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin (2011) Biochemistry, 50, pp. 8970-8981 
504 |a Cha, M.K., Hong, S.K., Kim, I.H., Four thiol peroxidases contain a conserved GCT catalytic motif and act as a versatile array of lipid peroxidases in Anabaena sp. PCC7120 (2007) Free Radic. Biol. Med., 42, pp. 1736-1748 
504 |a Wang, G., Olczak, A.A., Walton, J.P., Maier, R.J., Contribution of the Helicobacter pylori thiol peroxidase bacterioferritin comigratory protein to oxidative stress resistance and host colonization (2005) Infect. Immun., 73, pp. 378-384 
504 |a Jeong, W., Cha, M.K., Kim, I.H., Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family (2000) J. Biol. Chem., 275, pp. 2924-2930 
504 |a Zielonka, J., Sikora, A., Joseph, J., Kalyanaraman, B., Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate-based fluorescent probe (2010) J. Biol. Chem., 285, pp. 14210-14216 
504 |a Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 1620-1624 
504 |a Radi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide (1991) J. Biol. Chem., 266, pp. 4244-4250 
504 |a Alvarez, B., Demicheli, V., Duran, R., Trujillo, M., Cervenansky, C., Freeman, B.A., Radi, R., Inactivation of human Cu,Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical (2004) Free Radic. Biol. Med., 37, pp. 813-822 
504 |a Mitra, S., Dungan, S.R., Cholesterol solubilization in aqueous micellar solutions of quillaja saponin, bile salts, or nonionic surfactants (2001) J. Agric. Food Chem., 49, pp. 384-394 
504 |a Jaeger, T., Budde, H., Flohe, L., Menge, U., Singh, M., Trujillo, M., Radi, R., Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis (2004) Arch. Biochem. Biophys., 423, pp. 182-191 
504 |a Claiborne, A., Miller, H., Parsonage, D., Ross, R.P., Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation (1993) FASEB J., 7, pp. 1483-1490 
504 |a Yin, H., Porter, N.A., Specificity of the ferrous oxidation of xylenol orange assay: analysis of autoxidation products of cholesteryl arachidonate (2003) Anal. Biochem., 313, pp. 319-326 
504 |a Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci., 4, pp. 2411-2423 
504 |a Ellman, G.L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82, pp. 70-77 
504 |a Schonbaum, G.R., Lo, S., Interaction of peroxidases with aromatic peracids and alkyl peroxides. Product analysis (1972) J. Biol. Chem., 247, pp. 3353-3360 
504 |a Holmgren, A., Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide (1995) Structure, 3, pp. 239-243 
504 |a Trujillo, M., Mauri, P., Benazzi, L., Comini, M., De Palma, A., Flohe, L., Radi, R., Jaeger, T., The mycobacterial thioredoxin peroxidase can act as a one-cysteine peroxiredoxin (2006) J. Biol. Chem., 281, pp. 20555-20566 
504 |a Reyes, A.M., Hugo, M., Trostchansky, A., Capece, L., Radi, R., Trujillo, M., Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation (2011) Free Radic. Biol. Med., 51, pp. 464-473 
504 |a Bou, R., Codony, R., Tres, A., Decker, E.A., Guardiola, F., Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: a review of the factors that influence the method's performance (2008) Anal. Biochem., 377, pp. 1-15 
504 |a Nelson, K.J., Parsonage, D., Measurement of peroxiredoxin activity (2011) Curr. Protoc. Toxicol., , Chapter 7, Unit7 10 
504 |a Sermon, B.A., Eccleston, J.F., Skinner, R.H., Lowe, P.N., Mechanism of inhibition by arachidonic acid of the catalytic activity of Ras GTPase-activating proteins (1996) J. Biol. Chem., 271, pp. 1566-1572 
504 |a Dalziel, K., Initial stady state velocities in the evaluation of enzyme-substrate reaction mechanisms (1957) Acta Chem. Scand., 11, pp. 1706-1723 
504 |a Radi, R., Kinetic analysis of reactivity of peroxynitrite with biomolecules (1996) Methods Enzymol., 269, pp. 354-366 
504 |a Trujillo, M., Ferrer-Sueta, G., Radi, R., Kinetic studies on peroxynitrite reduction by peroxiredoxins (2008) Methods Enzymol., 441, pp. 173-196 
504 |a Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E., Augusto, O., Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics (2007) Free Radic. Biol. Med., 42, pp. 326-334 
504 |a Hayashi, Y., Yamazaki, I., The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C (1979) J. Biol. Chem., 254, pp. 9101-9106 
504 |a Floris, R., Piersma, S.R., Yang, G., Jones, P., Wever, R., Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase (1993) Eur. J. Biochem., 215, pp. 767-775 
504 |a Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., Denicola, A., The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2 (2009) Arch. Biochem. Biophys., 484, pp. 146-154 
504 |a Hugo, M., Turell, L., Manta, B., Botti, H., Monteiro, G., Netto, L.E., Alvarez, B., Trujillo, M., Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics (2009) Biochemistry, 48, pp. 9416-9426 
504 |a Demicheli, V., Moreno, D.M., Jara, G.E., Lima, A., Carballal, S., Rios, N., Batthyany, C., Radi, R., Mechanism of the reaction of human manganese superoxide dismutase with peroxynitrite: nitrationnitration of critical tyrosine 34 (2016) Biochemistry, 55, pp. 3403-3417 
504 |a Perkins, A., Poole, L.B., Karplus, P.A., Tuning of peroxiredoxin catalysis for various physiological roles (2014) Biochemistry, 53, pp. 7693-7705 
504 |a Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling (2006) Bioinformatics, 22, pp. 195-201 
504 |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935 
504 |a Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., DeBolt, S., Ferguson, D., Kollman, P., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun., 91, pp. 1-41 
504 |a Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14 (33-38), pp. 27-38 
504 |a Goldman, R., Stoyanovsky, D.A., Day, B.W., Kagan, V.E., Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin (1995) Biochemistry, 34, pp. 4765-4772 
504 |a Clarke, D.J., Mackay, C.L., Campopiano, D.J., Langridge-Smith, P., Brown, A.R., Interrogating the molecular details of the peroxiredoxin activity of the Escherichia coli bacterioferritin comigratory protein using high-resolution mass spectrometry (2009) Biochemistry, 48, pp. 3904-3914 
504 |a Liao, S.J., Yang, C.Y., Chin, K.H., Wang, A.H., Chou, S.H., Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures (2009) J. Mol. Biol., 390, pp. 951-966 
504 |a Wakita, M., Masuda, S., Motohashi, K., Hisabori, T., Ohta, H., Takamiya, K., The significance of type II and PrxQ peroxiredoxins for antioxidative stress response in the purple bacterium Rhodobacter sphaeroides (2007) J. Biol. Chem., 282, pp. 27792-27801 
504 |a Limauro, D., Pedone, E., Galdi, I., Bartolucci, S., Peroxiredoxins as cellular guardians in Sulfolobus solfataricus: characterization of Bcp1, Bcp3 and Bcp4 (2008) FEBS J., 275, pp. 2067-2077 
504 |a Dolman, D., Newell, G.A., Thurlow, M.D., A kinetic study of the reaction of horseradish peroxidase with hydrogen peroxide (1975) Can. J. Biochem., 53, pp. 495-501 
504 |a Koppenol, W.H., Moreno, J.J., Pryor, W.A., Ischiropoulos, H., Beckman, J.S., Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide (1992) Chem. Res. Toxicol., 5, pp. 834-842 
504 |a Wood, Z.A., Poole, L.B., Hantgan, R.R., Karplus, P.A., Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins (2002) Biochemistry, 41, pp. 5493-5504 
504 |a Rath, A., Davidson, A.R., Deber, C.M., The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition (2005) Biopolymers, 80, pp. 179-185 
504 |a Perkins, A., Parsonage, D., Nelson, K.J., Ogba, O.M., Cheong, P.H., Poole, L.B., Karplus, P.A., Peroxiredoxin catalysis at atomic resolution (2016) Structure, 24, pp. 1668-1678 
504 |a Mongkolsuk, S., Praituan, W., Loprasert, S., Fuangthong, M., Chamnongpol, S., Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli (1998) J. Bacteriol., 180, pp. 2636-2643 
504 |a Si, M., Wang, J., Xiao, X., Guan, J., Zhang, Y., Ding, W., Chaudhry, M.T., Shen, X., Ohr protects Corynebacterium glutamicum against organic hydroperoxide induced oxidative stress (2015) PLoS One, 10, p. e0131634 
504 |a Zeida, A., Reyes, A.M., Lichtig, P., Hugo, M., Vazquez, D.S., Santos, J., Gonzalez Flecha, F.L., Trujillo, M., Molecular basis of hydroperoxide specificity in peroxiredoxins: the case of AhpE from Mycobacterium tuberculosis (2015) Biochemistry, 54, pp. 7237-7247 
504 |a Pedone, E., Limauro, D., D'Alterio, R., Rossi, M., Bartolucci, S., Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus (2006) FEBS J., 273, pp. 5407-5420 
504 |a Pedone, E., Limauro, D., Bartolucci, S., The machinery for oxidative protein folding in thermophiles (2008) Antioxid. Redox Signal., 10, pp. 157-169 
504 |a Jain, M., Petzold, C.J., Schelle, M.W., Leavell, M.D., Mougous, J.D., Bertozzi, C.R., Leary, J.A., Cox, J.S., Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 5133-5138 
504 |a Griffin, J.E., Pandey, A.K., Gilmore, S.A., Mizrahi, V., McKinney, J.D., Bertozzi, C.R., Sassetti, C.M., Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations (2012) Chem. Biol., 19, pp. 218-227 
504 |a Lamkemeyer, P., Laxa, M., Collin, V., Li, W., Finkemeier, I., Schottler, M.A., Holtkamp, V., Dietz, K.J., Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis (2006) Plant J., 45, pp. 968-981 
504 |a Parsonage, D., Karplus, P.A., Poole, L.B., Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 8209-8214 
504 |a Bryk, R., Griffin, P., Nathan, C., Peroxynitrite reductase activity of bacterial peroxiredoxins (2000) Nature, 407, pp. 211-215 
504 |a Bryk, R., Lima, C.D., Erdjument-Bromage, H., Tempst, P., Nathan, C., Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein (2002) Science, 295, pp. 1073-1077 
504 |a Hugo, M., Van Laer, K., Reyes, A.M., Vertommen, D., Messens, J., Radi, R., Trujillo, M., Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis (2014) J. Biol. Chem., 289, pp. 5228-5239 
504 |a Kumar, A., Balakrishna, A.M., Nartey, W., Manimekalai, M.S., Gruber, G., Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol (2016) Free Radic. Biol. Med., 97, pp. 588-601 
504 |a Mendes, P., GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems (1993) Comput. Appl. Biosci., 9, pp. 563-571 
520 3 |a Mycobacterium tuberculosis (M. tuberculosis) is the intracellular bacterium responsible for tuberculosis disease (TD). Inside the phagosomes of activated macrophages, M. tuberculosis is exposed to cytotoxic hydroperoxides such as hydrogen peroxide, fatty acid hydroperoxides and peroxynitrite. Thus, the characterization of the bacterial antioxidant systems could facilitate novel drug developments. In this work, we characterized the product of the gene Rv1608c from M. tuberculosis, which according to sequence homology had been annotated as a putative peroxiredoxin of the peroxiredoxin Q subfamily (PrxQ B from M. tuberculosis or MtPrxQ B). The protein has been reported to be essential for M. tuberculosis growth in cholesterol-rich medium. We demonstrated the M. tuberculosis thioredoxin B/C-dependent peroxidase activity of MtPrxQ B, which acted as a two-cysteine peroxiredoxin that could function, although less efficiently, using a one-cysteine mechanism. Through steady-state and competition kinetic analysis, we proved that the net forward rate constant of MtPrxQ B reaction was 3 orders of magnitude faster for fatty acid hydroperoxides than for hydrogen peroxide (3×106 vs 6×103 M− 1 s− 1, respectively), while the rate constant of peroxynitrite reduction was (0.6−1.4) ×106 M− 1 s− 1 at pH 7.4. The enzyme lacked activity towards cholesterol hydroperoxides solubilized in sodium deoxycholate. Both thioredoxin B and C rapidly reduced the oxidized form of MtPrxQ B, with rates constants of 0.5×106 and 1×106 M− 1 s− 1, respectively. Our data indicated that MtPrxQ B is monomeric in solution both under reduced and oxidized states. In spite of the similar hydrodynamic behavior the reduced and oxidized forms of the protein showed important structural differences that were reflected in the protein circular dichroism spectra. © 2016 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Universidad de la República Uruguay 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 20020130100097BA, 20020130100468BA 
536 |a Detalles de la financiación: 767 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT2013-0982, PICT2014-1022 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP-11220110100723 
536 |a Detalles de la financiación: This work was supported by grants from Universidad de la República (CSIC Grupos 767 and Espacio Interdisciplinario), CONICET ( PIP-11220110100723 ), ANPCyT ( PICT2014-1022 and PICT2013-0982 ) and UBACyT ( 20020130100097BA and 20020130100468BA ). A. M. Reyes was partially supported by a PhD scholarship from Universidad de la República-CAP, Uruguay and D.S. Vazquez was supported by a PhD scholarship from Universidad de Buenos Aires , Argentina. 
593 |a Departamento de Bioquímica, Facultad de Medicina, Universidad de la RepúblicaMontevideo, Uruguay 
593 |a Center for Free Radical and Biomedical Research, Universidad de la RepúblicaMontevideo, Uruguay 
593 |a Instituto de Química y Físicoquímica Biológicas “Prof. Alejandro C. Paladini” (IQUIFIB), Universidad de Buenos Aires and CONICET, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Unidad de Biología Molecular-Institut Pasteur MontevideoMontevideo, Uruguay 
690 1 0 |a FATTY ACID HYDROPEROXIDES 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a PEROXIDATIC AND RESOLVING CYSTEINE 
690 1 0 |a PEROXIREDOXIN 
690 1 0 |a PEROXYNITRITE 
690 1 0 |a THIOL-DEPENDENT PEROXIDASE 
690 1 0 |a THIOREDOXIN 
690 1 0 |a DEOXYCHOLATE SODIUM 
690 1 0 |a OXIDOREDUCTASE 
690 1 0 |a PEROXIREDOXIN Q B 
690 1 0 |a PEROXYNITRITE 
690 1 0 |a REDUCING AGENT 
690 1 0 |a THIOREDOXIN 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ALDEHYDE DEHYDROGENASE 
690 1 0 |a BACTERIAL PROTEIN 
690 1 0 |a FATTY ACID 
690 1 0 |a FATTY ACID REDUCTASE 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a PEROXIREDOXIN 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a RECOMBINANT PROTEIN 
690 1 0 |a THIOREDOXIN 
690 1 0 |a ARTICLE 
690 1 0 |a BACTERIAL GROWTH 
690 1 0 |a CATALYSIS 
690 1 0 |a CIRCULAR DICHROISM 
690 1 0 |a CONFORMATIONAL TRANSITION 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a ENZYME CONFORMATION 
690 1 0 |a HYDRODYNAMICS 
690 1 0 |a HYDROGEN BOND 
690 1 0 |a HYDROPHOBICITY 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a NONHUMAN 
690 1 0 |a OBSERVED RATE CONSTANT 
690 1 0 |a OXIDATION 
690 1 0 |a OXIDATION REDUCTION STATE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN SECONDARY STRUCTURE 
690 1 0 |a PROTEIN STRUCTURE 
690 1 0 |a PROTEIN TERTIARY STRUCTURE 
690 1 0 |a REDUCTION 
690 1 0 |a SEQUENCE HOMOLOGY 
690 1 0 |a STEADY STATE 
690 1 0 |a ALPHA HELIX 
690 1 0 |a BETA SHEET 
690 1 0 |a BINDING SITE 
690 1 0 |a CHEMISTRY 
690 1 0 |a ENZYME SPECIFICITY 
690 1 0 |a ENZYMOLOGY 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENE VECTOR 
690 1 0 |a GENETICS 
690 1 0 |a KINETICS 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULAR CLONING 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a OXIDATION REDUCTION REACTION 
690 1 0 |a PROTEIN DOMAIN 
690 1 0 |a PROTEIN MOTIF 
690 1 0 |a ALDEHYDE OXIDOREDUCTASES 
690 1 0 |a AMINO ACID MOTIFS 
690 1 0 |a BACTERIAL PROTEINS 
690 1 0 |a BINDING SITES 
690 1 0 |a CLONING, MOLECULAR 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a FATTY ACIDS 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENETIC VECTORS 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a KINETICS 
690 1 0 |a MOLECULAR DYNAMICS SIMULATION 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a PEROXIREDOXINS 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN CONFORMATION, ALPHA-HELICAL 
690 1 0 |a PROTEIN CONFORMATION, BETA-STRAND 
690 1 0 |a PROTEIN INTERACTION DOMAINS AND MOTIFS 
690 1 0 |a RECOMBINANT PROTEINS 
690 1 0 |a SUBSTRATE SPECIFICITY 
690 1 0 |a THIOREDOXINS 
700 1 |a Vazquez, D.S. 
700 1 |a Zeida, A. 
700 1 |a Hugo, M. 
700 1 |a Piñeyro, M.D. 
700 1 |a De Armas, M.I. 
700 1 |a Estrin, D. 
700 1 |a Radi, R. 
700 1 |a Santos, J. 
700 1 |a Trujillo, M. 
773 0 |d Elsevier Inc., 2016  |g v. 101  |h pp. 249-260  |p Free Radic. Biol. Med.  |x 08915849  |w (AR-BaUEN)CENRE-4784  |t Free Radical Biology and Medicine 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994291367&doi=10.1016%2fj.freeradbiomed.2016.10.005&partnerID=40&md5=aa272e86bbb4da4d712f9fdb22260205  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.freeradbiomed.2016.10.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08915849_v101_n_p249_Reyes  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08915849_v101_n_p249_Reyes  |y Registro en la Biblioteca Digital 
961 |a paper_08915849_v101_n_p249_Reyes  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76477