Thionitrous Acid/Thionitrite and Perthionitrite Intermediates in the “Crosstalk” of NO and H 2 S

The chemistry of aqueous NO and H 2 S as redox regulators of cellular and physiological responses in cardiovascular, immune or neurological tissues has raised the question of the overlapping pathophysiological functions often involving similar molecular targets. The interactions of NO with H 2 S may...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marcolongo, J.P
Otros Autores: Zeida, A., Slep, L.D, Olabe, J.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13240caa a22013337a 4500
001 PAPER-15302
003 AR-BaUEN
005 20230518204601.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85018187266 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Marcolongo, J.P. 
245 1 0 |a Thionitrous Acid/Thionitrite and Perthionitrite Intermediates in the “Crosstalk” of NO and H 2 S 
260 |b Academic Press Inc.  |c 2017 
270 1 0 |m Olabe, J.A.; Facultad de Ciencias Exactas y Naturales and INQUIMAE, Universidad de Buenos Aires/CONICET, Ciudad UniversitariaArgentina; email: olabe@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Wang, R., (2012) Physiol. Rev., 92, pp. 791-896 
504 |a Fukuto, J.M., Carrington, S.J., Tantillo, D.J., Harrison, J.G., Ignarro, L.J., Freeman, B.A., Chen, A., Wink, D.A., (2012) Chem. Res. Toxicol., 25, pp. 769-793 
504 |a Ignarro, J.L., Nitric Oxide: Biology and Pathobiology (2000), Academic Press San Diego; Calderwood, A., Kopriva, S., (2014) Nitric Oxide, 41, pp. 72-78 
504 |a Bari, S.E., Olabe, J.A., (2016) Gasotransmitters in Plants. The Rise of a New Paradigm in Cell Signalling, pp. 289-327. , L. Lamattina C. García-Mata Springer International Publishing Switzerland ch. 14 
504 |a Bari, S.E., Olabe, J.A., Slep, L.D., (2014) Adv. Inorg. Chem., 67, pp. 87-144 
504 |a Lehnert, N., Berto, T.C., Galinato, M.G.I., Goodrich, L.E., (2011) The Handbook of Porphyrin Science, 14, pp. 1-247. , K.M. Kadish K.M. Smith R. Guilard World Scientific New Jersey 63 
504 |a Li, Q., Lancaster, J.R., Jr., (2013) Nitric Oxide, 35, pp. 21-34 
504 |a Mishanina, T.V., Libiad, M., Banerjee, R., (2015) Free Rad. Biol. Med., 11, pp. 457-464 
504 |a Olabe, J.A., (2004) Adv. Inorg. Chem., 55, pp. 61-126 
504 |a Toohey, J.L., (2011) Anal. Biochem., 413, pp. 1-7 
504 |a Ono, K., Akaike, T., Sawa, T., Kumagai, Y., Wink, D.A., Tantillo, D.J., Hobbs, A.J., Fukuto, J.M., (2014) Free Rad. Biol. Med., 77, pp. 82-94 
504 |a Cuevasanta, E., Moller, M.N., Alvarez, B., (2017) Arch. Biochem. Biophys., 617, pp. 9-25 
504 |a Whiteman, M., Li, L., Kostetski, I., Chu, S.H., Siau, J.L., Bhatia, M., Moore, P.K., (2006) Biochem. Biophys. Res. Commun., 343, pp. 303-310 
504 |a Yong, Q.C., Cheong, J.L., Hua, F., Deng, L.W., Khoo, Y.M., Lee, H.S., Perry, A., Bian, J.S., (2011) Antioxid. Redox Signal, 14, pp. 2081-2091 
504 |a Coletta, C., Papapetropoulos, A., Erdelyi, K., Olah, G., Modis, K., Panopoulos, P., Asimakopoulou, A., Szabo, C., (2012) Proc. Natl. Acad. Sci. U.S.A, 109 (23), pp. 9161-9166 
504 |a Fago, A., Jensen, F.B., Tota, B., Feelisch, M., Olson, K.R., Helbo, S., Lefevre, S., Skovgaard, N., (2012) Comp. Biochem. Physiol. A, 162, pp. 1-6 
504 |a Lo Faro, M.L., Fox, B., Whatmore, J.L., Winyard, P.G., Whiteman, M., (2014) Nitric Oxide, 41, pp. 38-47 
504 |a Berenyiova, A., Grman, M., Mijuskovic, A., Stasko, A., Misak, A., Nagy, P., Ondriasova, E., Ondrias, K., (2015) Nitric Oxide, 46, pp. 123-130 
504 |a Grman, M., Jawad Nassim, M., Leontiev, R., Misak, A., Jakusova, V., Ondrias, K., Jacob, C., (2017) Antioxidants, 6, p. 14 
504 |a King, S.B., (2013) Free Rad. Biol. Med., 55, pp. 1-7 
504 |a Nonella, M., Huber, J.R., Ha, T.K., (1987) J. Phys. Chem., 91, pp. 5203-5209 
504 |a Seel, F., Kuhn, R., Simon, G., Wagner, M., Krebs, B., Dartmann, M., (1985) Z. Naturforsch., 40b, pp. 1607-1617 
504 |a Filipovic, M.R., Miljkovic, J.L., Nauser, T., Royzen, M., Klos, K., Shubina, T., Koppenol, W.H., Ivanović-Burmazović, I., (2012) J. Am. Chem. Soc., 134, pp. 12016-12027 
504 |a Wedmann, R., Zahl, A., Shubina, T.E., Durr, M., Heinemann, F.W., Eberhard, B., Bugenhagen, C., Filipovic, M.R., (2015) Inorg. Chem., 54, pp. 9367-9380 
504 |a Cortese-Krott, M.M., Fernandez, B.O., Santos, J.L.T., Mergia, E., Grman, M., Nagy, P., Kelm, M., Feelisch, M., (2014) Redox Biol., 2, pp. 234-244 
504 |a Cortese-Krott, M.M., Kuhnle, G.G., Dyson, A., Fernandez, B.O., Grman, M., DuMond, J.F., Barrow, M.P., Feelisch, M., (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 4651-4660 
504 |a Broniowska, K.A., Hogg, A., (2012) Antioxid. Redox Signal., 17, pp. 969-980 
504 |a Szacilowski, K., Stasicka, Z., (2001) Progr. React. Kin. Mech., 26, pp. 1-58 
504 |a Quiroga, S.L., Almaraz, A.E., Amorebieta, V.T., Perissinotti, L.L., Olabe, J.A., (2011) Chem. Eur. J., 17, pp. 4145-4156 
504 |a Filipovic, M.R., Ivanovic-Burmazovic, I., (2012) Chem. Eur. J., 18, pp. 13538-13540 
504 |a Filipovic, M.R., Eberhardt, M., Prokopovic, V., Mijuskovic, A., Orescanin Dusic, O., Reeh, P.H., Ivanovic-Burmazovic, I., (2013) J. Med. Chem., 56, pp. 1499-1508 
504 |a Gao, Y., Toubaei, A., Kong, X., Wu, G., (2015) Chem. Eur. J., 21, pp. 17172-17177 
504 |a Olabe, J.A., (2016) 3rd European Colloquium on Inorganic Reaction Mechanisms, , ECIRM June 21−25, Kraków. Oral presentation, unpublished work 
504 |a Arulsamy, N., Bohle, D.S., Butt, J.A., Irvine, G.J., Jordan, P.A., Sagan, E., (1999) J. Am. Chem. Soc., 121, pp. 7115-7123 
504 |a Hu, Y., Stanbury, D.M., (2016) Inorg. Chem., 55, pp. 7797-7803 
504 |a Das, T.N., Huie, R.E., Neta, P., Padmaja, S., (1999) J. Phys. Chem. A, 103, pp. 5221-5226 
504 |a Koppenol, W.H., (2012) Inorg. Chem., 51, pp. 5637-5641 
504 |a Arnelle, D.R., Stamler, J.S., (1999) Arch. Biochem. Biophys., 318 (2), pp. 279-285 
504 |a Singh, S.P., Wishnok, J.S., Keshive, M., Deen, W.M., Tannenbaum, S.R., (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 14428-14433 
504 |a Wong, P.S.Y., Hyun, J., Fukuto, J.M., Shirota, F.N., DeMaster, E.G., Shoeman, D.W., Nagasawa, H.T., (1998) Biochemistry, 37, pp. 5362-5371 
504 |a Cortese-Krott, M.M., Butler, A., Woollins, J.D., Feelisch, M., (2016) Dalton Trans., 45, pp. 5908-5919 
504 |a Ivanova, L.V., Anton, B.J., Timerghazin, Q.K., (2014) Phys. Chem. Chem. Phys., 16, pp. 8476-8486 
504 |a Nava, M., Martin-Drummel, M.A., Lopez, C.A., Crabtree, K.N., Womack, C.C., Nguyen, T.L., Thorwirth, S., McCarthy, M.C., (2016) J. Am. Chem. Soc., 138, pp. 11441-11444 
504 |a Koppenol, W.H., Bounds, P.L., (2017) Arch. Biochem. Biophys., 617, pp. 3-8 
504 |a Seel, F., Wagner, M., (1988) Z. Anorg. Allg. Chem., 558, pp. 189-192 
504 |a Bohle, D.S., Hansert, B., Paulson, S.C., Smith, B.D., (1994) J. Am. Chem. Soc., 116, pp. 7423-7424 
504 |a Szacilowski, K., Chmura, A., Stasicka, Z., (2005) Coord. Chem. Rev., 249, pp. 2408-2436 
504 |a Marcolongo, J.P., Morzan, U.N., Zeida, A., Scherlis, D.A., Olabe, J.A., (2016) Phys. Chem. Chem. Phys., 18, pp. 30047-30052 
504 |a Slep, L.D., Pollak, S., Olabe, J.A., (1999) Inorg. Chem., 38, pp. 4369-4371 
504 |a Munro, A.P., Williams, D.L.H., (2000) J. Chem. Soc. Perkin, 21, pp. 1794-1797 
504 |a Armstrong, D.A., Huie, R.E., Koppenol, W.H., Lymar, S.V., Merényi, G., Neta, P., Ruscic, B., Wardman, P., (2015) Pure Appl. Chem., 87, pp. 1139-1150 
504 |a Eberhard, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., Kichko, T.L., Filipovic, M.R., (2014) Nat. Commun., 5, p. 4381 
504 |a Nagy, P., (2015) Methods Enzymol., 554, pp. 3-29 
504 |a Cuevasanta, E., Zeida, A., Carballal, S., Wedmann, R., Morzan, U.N., Trujillo, M., Radi, R., Alvarez, B., (2015) Free Radic. Biol. Med., 80, pp. 93-100 
504 |a Giggenbach, W., (1971) Inorg. Chem., 11, pp. 1333-1338 
504 |a Bailey, T.S., Henthorn, H.A., Pluth, M.D., (2016) Inorg. Chem., 55, pp. 12618-12625 
504 |a Bolden, C., King, S.B., Kim-Shapiro, D.B., (2016) Free Rad. Biol. Med., 99, pp. 418-425 
504 |a Estrín, D.A., Baraldo, L.M., Slep, L.D., Barja, B.C., Olabe, J.A., (1996) Inorg. Chem., 35, pp. 3897-3903 
504 |a Wedmann, R., Ivanovic-Burmazovic, I., Filipovic, M.R., (2017) Interface Focus, 7, p. 20160139 
504 |a Cuevasanta, E., Lange, M., Bonanata, J., Coitiño, E.L., Ferrer-Sueta, G., Filipovic, M.R., Alvarez, B., (2015) J. Biol. Chem., 290, pp. 26866-26880 
504 |a Everett, S.A., Schoneich, C., Stewart, J.H., Asmus, K.D., (1992) J. Phys. Chem., 96, pp. 306-314 
504 |a Shafirovich, V., Lymar, S.V., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 7340-7345 
504 |a Smulik, R., Debski, D., Zielonka, J., Michalowski, B., Adamus, J., Marcinek, A., Kalyanaraman, B., Sikora, A., (2014) J. Biol. Chem., 289, pp. 35570-35581 
504 |a Pokkrebyshev, G.A., Shafirovich, V., Lymar, S.V., (2008) J. Am. Chem. Soc., 112, pp. 8295-8302 
504 |a Frost, A.A., Pearson, R.G., Kinetics and Mechanism: A Study of Homogeneous Chemical Reactions (1961), 2nd ed. John Wiley & Sons New York, London; Szacilowski, K., Wanat, A., Barbieri, A., Wasiliewska, E., Witko, M., Stochel, G., Stasicka, Z., (2002) New J. Chem., 26, pp. 1495-1502 
504 |a Szacilowski, K., Stochel, G., Stasicka, Z., Kisch, H., (1997) New J. Chem., 21, pp. 893-902 
504 |a Schwane, J.D., Ashby, M.T., (2002) J. Am. Chem. Soc., 124, pp. 6822-6823 
504 |a Gao, Y., Mossing, B., Wu, G., (2015) Dalton Trans., 44, pp. 20338-20343 
504 |a Andreasen, L.V., Lorkovic, I.M., Richter-Addo, G.B., Ford, P.C., (2002) Nitric Oxide, 6, pp. 228-237 
504 |a Perissinotti, L.L., Estrin, D.A., Leitus, G., Doctorovich, F., (2006) J. Am. Chem. Soc., 128, pp. 2512-2513 
504 |a Perissinotti, L.L., Leitus, G., Shimon, L., Estrin, D., Doctorovich, F., (2008) Inorg. Chem., 47, pp. 4723-4733 
504 |a Johnson, M.D., Wilkins, R.G., (1984) Inorg. Chem., 23, pp. 231-235 
504 |a Morando, P.J., Borghi, E.B., de Schteingart, L.M., Blesa, M.A., (1981) J. Chem. Soc. Dalton Trans., (2), pp. 435-440 
504 |a Miljkovic, J., Kenkel, I., Ivanovic-Burmazovic, I., Filipovic, M., (2013) Angew. Chem. Int. Ed., 52 (46), pp. 12061-12064 
504 |a Playfair, L., (1850) Annalen, 74, p. 317 
504 |a Butler, A.R., Calsy-Harrison, A.M., Glidewell, C., Sorensen, P.E., (1988) Polyhedron, 7, pp. 1197-1202 
504 |a Ivanovic-Burmazovic, I., (2017), pp. 67-104. , In The Chemistry and Biology of Nitroxyl (HNO); Doctorovich, F., Farmer, P. J., Marti, M. A., Eds.; Elsevier Inc.;, Amsterdam, Netherlands. ISBN. ch. 5; Filipovic, M., (2017), pp. 105-126. , In The Chemistry and Biology of Nitroxyl (HNO); Doctorovich, F., Farmer, P. J., Marti, M. A., Eds.; Elsevier Inc.;, Amsterdam, Netherlands. ISBN. ch. 6 
520 3 |a The chemistry of aqueous NO and H 2 S as redox regulators of cellular and physiological responses in cardiovascular, immune or neurological tissues has raised the question of the overlapping pathophysiological functions often involving similar molecular targets. The interactions of NO with H 2 S may functionally influence each other and focus has been directed to new N/S hybrid species eventually determining signaling capabilities. Besides the well-studied nitrosothiols, RSNOs, the eruption of H 2 S in the mechanistic scene has stimulated increased interest in thionitrous acid, HSNO, and thionitrite, NOS − , as well as in perthionitrite (nitrosopersulfide), S 2 NO − . We discuss the elusive chemistry of the latter molecules as intermediates in selected reactions in aqueous solution, either as free species or as bound to iron metal centers. The coordination chemistry involves mainly an updating on the “Gmelin” reaction proceeding upon mixing nitroprusside [Fe(CN) 5 (NO)] 2 − and H 2 S, with controversial and still unsolved mechanistic issues related to the onset of NO, HNO/N 2 O, polysulfides HS n − (n = 2–7), together with bound thionitrous acid/thionitrite/perthionitrite and other intermediates and products. © 2017 Elsevier Inc.  |l eng 
593 |a Facultad de Ciencias Exactas y Naturales and INQUIMAE, Universidad de Buenos Aires/CONICET, Ciudad Universitaria, Buenos Aires, Argentina 
690 1 0 |a HYDRODISULFIDES 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a NITROUS OXIDE 
690 1 0 |a NITROXYL 
690 1 0 |a PERTHIONITRITE 
690 1 0 |a POLYSULFIDES 
690 1 0 |a THIONITRITE 
690 1 0 |a THIONITROUS ACID 
700 1 |a Zeida, A. 
700 1 |a Slep, L.D. 
700 1 |a Olabe, J.A. 
773 0 |d Academic Press Inc., 2017  |g v. 70  |h pp. 277-309  |p Adv. Inorg. Chem.  |x 08988838  |t Advances in Inorganic Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018187266&doi=10.1016%2fbs.adioch.2017.02.002&partnerID=40&md5=c8ff2ed292e4ec5bd470b4644cdad67a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/bs.adioch.2017.02.002  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08988838_v70_n_p277_Marcolongo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08988838_v70_n_p277_Marcolongo  |y Registro en la Biblioteca Digital 
961 |a paper_08988838_v70_n_p277_Marcolongo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76255