Influence of Maillard conjugation on structural characteristics and rheological properties of whey protein/dextran systems

It is well known that protein/polysaccharide conjugates obtained by Maillard reaction (MR) have good emulsifying properties. However, there is little information about the use of these conjugates in gel systems. Structural characteristics and rheological properties of conjugates obtained by MR of wh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Spotti, M.J
Otros Autores: Martinez, M.J, Pilosof, A.M.R, Candioti, M., Rubiolo, A.C, Carrara, C.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13953caa a22010217a 4500
001 PAPER-14139
003 AR-BaUEN
005 20230518204436.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84893834727 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FOHYE 
100 1 |a Spotti, M.J. 
245 1 0 |a Influence of Maillard conjugation on structural characteristics and rheological properties of whey protein/dextran systems 
260 |c 2014 
270 1 0 |m Spotti, M.J.; Grupo de Biocoloides, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina; email: juliaspotti@yahoo.com.ar 
506 |2 openaire  |e Política editorial 
504 |a Akhtar, M., Dickinson, E., Whey protein-maltodextrin conjugates as emulsifying agents, an alternative to gum arabic (2007) Food Hydrocolloids, 21 (4), pp. 607-616 
504 |a Baier, S.K., Mc Clements, D.J., Influence of cosolvent systems on the gelation mechanism of globular protein: thermodynamic, kinetic, and structural aspects of globular protein gelation (2006) Comprehensive Reviews in Food Science and Food Safety, 4, pp. 43-54 
504 |a Broersen, K., Elshof, M., De Groot, J., Voragen, A., Hamer, R., Aggregation of β-lactoglobulin regulated by glucosylation (2007) Journal of Agriculture and Food Chemistry, 55, pp. 2431-2437 
504 |a Broersen, K., Voragen, A.G.J., Hamer, R.J., de Jongh, H.H.J., Glycoforms of β-lactoglobulin with improved thermostability and preserved structural packing (2004) Biotechnology and Bioengineering, 86, pp. 78-87 
504 |a Cheftel, J.C., Cuq, J.L., Lorient, D., Modificaciones de las proteínas (1989) Proteínas alimentarias. Bioquímica. Propiedades funcionales. Valor nutritivo. Modificaciones químicas, pp. 304-309. , Editorial ACRIBIA S.A, Zaragoza España 
504 |a Choi, S.J., Kim, H.J., Park, K.H., Moon, T.W., Molecular characteristics of ovalbumin-dextran conjugates formed through the Maillard reaction (2005) Food Chemistry, 92, pp. 93-99 
504 |a Damodaran, S., Food protein, an overview (1997) Food proteins and their applications, , Marcel Dekker, New York, S. Damodaran, A. Paraf (Eds.) 
504 |a Dickinson, E., Galazka, V.B., Emulsion stabilization by ionic and covalent complexes of β-lactoglobulin with polysaccharides (1991) Food Hydrocolloids, 5, pp. 281-296 
504 |a Diftis, N., Kiosseoglou, V., Competitive adsorption between a dry-heated soy protein-dextran mixture and surface-active materials in oil-in-water emulsions (2004) Food Hydrocolloids, 18, pp. 639-646 
504 |a Diftis, N., Kiosseoglou, V., Physicochemical properties of dry-heated soy protein isolate-dextran mixtures (2006) Food Chemistry, 96 (2), pp. 228-233 
504 |a Dunlap, C.A., CÔté, G.L., β-lactoglobulin-dextran conjugates: effect of polysaccharide size on emulsion stability (2005) Journal of Agricultural and Food Chemistry, 53, pp. 419-423 
504 |a Gonçalves, M.P., Torres, D., Andrade, C.T., Azero, E.G., Lefebvre, M., Rheological study of the effect of Cassia javanica galactomannans on the heat-set gelation of a whey protein isolate at pH 7 (2004) Food Hydrocolloids, 18, pp. 181-189 
504 |a Hattori, M., Functional improvements in food proteins in multiple aspects by conjugation with saccharides: case studies of β-lactoglobulin-acidic polysaccharides conjugates (2002) Food Science and Technology Research, 8 (4), pp. 291-299 
504 |a Hattori, M., Ogino, A., Nakai, H., Takahashi, K., Functional improvement of β-lactoglobulin by conjugating with alginate lyase-lysate (1997) Journal of Agricultural and Food Chemistry, 45, pp. 703-708 
504 |a Hattori, M., Okada, Y., Takahashi, K., Functional changes in β-lactoglobulin upon conjugation with carboxymethyl cyclodextrin (2000) Journal of Agricultural and Food Chemistry, 48, pp. 3789-3794 
504 |a Jiménez-Castaño, L., López-Fandiño, R., Olano, A., Villamiel, M., Study on β-lactoglobulin glycosylation with dextran: effect on solubility and heat stability (2005) Food Chemistry, 93, pp. 689-695 
504 |a Jiménez-Castaño, L., Villamiel, M., Lopez-Fandiño, R., Glicosilation of individual whey proteins by Maillard reaction using dextran of different molecular mass (2007) Food Hydrocolloids, 21, pp. 433-443 
504 |a Jiménez-Castaño, L., Villamiel, M., Martín-Alvarez, P.J., Olano, A., Lopez-Fandiño, R., Effect of the dry-heating conditions on the glycosylation of β-lactoglobulin with dextran through the Maillard reaction (2005) Food Hydrocolloids, 19, pp. 831-837 
504 |a Katayama, S., Shima, J., Saeki, H., Solubility improvement of shellfish muscle proteins by reaction with glucose and its soluble state in low-ionic-strength medium (2002) Journal of Agricultural and Food Chemistry, 50, pp. 4327-4332 
504 |a Kato, A., Industrial applications of Maillard-type protein-polysaccharide conjugates (2002) Food Science and Technology Research., 8, pp. 193-199 
504 |a Kato, A., Mifuru, R., Matsudomi, N., Kobayashi, K., Functional casein-polysaccharide conjugates prepared by controlled dry heating (1992) Bioscience, Biotechnology, and Biochemistry, 56, pp. 567-571 
504 |a Kim, H.J., Choi, S.J., Shin, W.-S., Moon, T.W., Emulsifying properties of bovine serum albumin-galactomannan conjugates (2003) Journal of Agricultural and Food Chemistry, 51 (4), pp. 1049-1056 
504 |a Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685 
504 |a Lee, S.L., Hafeman, A.E., Debenedetti, P.G., Pethica, B.A., Moore, D., Solid-state stabilization of r-chymotrypsin and catalase with carbohydrates (2006) Industrial & Engineering Chemistry Research, 45, pp. 5134-5147 
504 |a Lertittikul, W., Benjakul, S., Tanaka, M., Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by pH (2007) Food Chemistry, 100, pp. 669-677 
504 |a Li, C.P., Enomoto, H., Ohki, S., Ohtomo, H., Aoki, T., Improvement of functional properties of whey protein isolate through glycation and phosphorylation by dry heating (2005) Journal of Dairy Science, 88, pp. 4137-4145 
504 |a Martinez, M.J., Farías, M.E., Pilosof, A.M.R., The dynamics of heat gelation of casein glycomacropeptide-β-lactoglobulin mixtures as affected by interactions in the aqueous phase (2010) International Dairy Journal, 20, pp. 580-588 
504 |a Matsudomi, N., Nakano, K., Soma, A., Ochi, A., Improvement of gel properties of dried egg white by modification with galactomannan through the Maillard reaction (2002) Journal of Agricultural and Food Chemistry, 50, pp. 4113-4118 
504 |a Miller, A., Gerrard, J., The Maillard reaction and food protein crosslinking (2005) Progress in Food Biopolymer Research, 1, pp. 69-86 
504 |a Miralles, B., Martínez-Rodríguez, A., Santiago, A., van de Lagemaat, J., Heras, A., The occurrence of a Maillard-type protein-polysaccharide reaction between β-lactoglobulin and chitosan (2007) Food Chemistry, 100, pp. 1071-1075 
504 |a Oliver, C.M., Melton, L.D., Stanley, R.A., Creating protein with novel functionality via the Maillard reaction: a review (2006) Critical Review in Food Science and Nutrition, 46, pp. 337-350 
504 |a Ould Eleya, M.M., Turgeon, S.L., Rheology of κ-carrageenan and β-lactoglobulin mixed gels (2000) Food Hydrocolloids, 14, pp. 29-40 
504 |a Renard, D., Lefebvre, J., Griffin, M.C., Griffin, W.G., Effects of pH and salt environment on the association of beta-lactoglobulin revealed by intrinsic fluorescence studies (1998) International Journal of Biological Macromolecules, 22 (1), pp. 41-49 
504 |a Renkema, J.M.S., Van Vliet, T., Heat-induced gel formation by soy proteins at neutral pH (2002) Journal of Agricultural and Food Chemistry, 50, pp. 1569-1573 
504 |a Sato, R., Katayama, S., Sawabe, T., Saeki, H., Stability and emulsion-forming ability of water-soluble fish myofibrillar protein prepared by conjugation with alginate oligosaccharide (2003) Journal of Agricultural and Food Chemistry, 51, pp. 4376-4381 
504 |a Seymour, F.R., Knapp, R.D., Structural analysis of dextrans from strains of Leuconostoc and related genera, that contain 3-O-α-d-glucosylated-d-glucopyranosyl residues at the branched points or in consecutive, linear position (1980) Carbohydrate Research, 81, pp. 105-129 
504 |a Shepherd, R., Robertson, A., Ofman, D., Dairy glycoconjugate emulsifiers: casein-maltodextrins (2000) Food Hydrocolloids, 14, pp. 281-286 
504 |a Spotti, M.J., Perduca, M., Piagentini, A., Santiago, L., Rubiolo, A., Carrara, C., Does dextran molecular weight affect the mechanical properties of whey protein/dextran conjugate gels (2013) Food Hydrocolloids, 32 (1), pp. 204-210 
504 |a Spotti, M.J., Perduca, M., Piagentini, A., Santiago, L., Rubiolo, A., Carrara, C., Gel mechanical properties of milk whey protein-dextran conjugates obtained by Maillard reaction (2013) Food Hydrocolloids, 31 (1), pp. 26-32 
504 |a Stading, M., Hermansson, A.M., Viscoelastic behaviour of β-lactoglobulin structures (1990) Food Hydrocolloids, 4 (2), pp. 121-135 
504 |a Sun, Y., Hayakawa, S., Izumori, K., Modification of ovalbumin with a rare keto-hexose through the Maillard reaction, effect on protein structure and gel properties (2004) Journal of Agricultural and Food Chemistry, 52, pp. 1293-1299 
504 |a Sun, W., Yu, S., Yang, X., Wang, J., Zhang, J., Zhang, Y., Study on the rheological properties of heat-induced whey protein isolate-dextran conjugate gel (2011) Food Research International, 44, pp. 3259-3263 
504 |a Tanabe, M., Saeki, H., Effect of Maillard reaction with glucose and ribose on solubility at low ionic strength and filament-forming ability of fish myosin (2001) Journal of Agricultural and Food Chemistry, 49, pp. 3403-3407 
504 |a Tavares, C., Lopes da Silva, J., Rheology of galactomannan-whey protein mixed systems (2003) International Dairy Journal, 13 (8), pp. 699-706 
504 |a Zacharius, R., Zel, L.T., Morrison, J., Woodlock, J., Glycoprotein staining following electrophoresis on acrylamide gels polyacrylamide (1968) Analytical Biochemistry, 30 (1), pp. 148-152 
504 |a Zhu, D., Damodaran, S., Lucey, J.A., Formation of whey protein isolate (WPI)-dextran conjugates in aqueous solutions (2008) Journal Agricultural and Food Chemistry, 56, pp. 7113-7118 
520 3 |a It is well known that protein/polysaccharide conjugates obtained by Maillard reaction (MR) have good emulsifying properties. However, there is little information about the use of these conjugates in gel systems. Structural characteristics and rheological properties of conjugates obtained by MR of whey protein isolate (WPI) and dextrans (DX) of various molecular weight (MW: 6, 40 and 70kDa) were studied. Conjugation was confirmed by electrophoresis; browning intensity was measured by absorbance at 420nm; and conformational changes were studied by fluorescence emission of tryptophan (Trp) (λex=280nm). Rheological properties were determined by oscillatory rheometry with temperature ramp (25-90°C). After each measure, a mechanical spectrum (at 25°C) was obtained. The electrophoresis indicated the presence of WPI/DX conjugates in all systems. Browning intensity increased with decreasing MW of DX. Fluorescence emission of WPI incubated increased, but decreased in WPI/DX incubated systems. The gelation time (obtained by G'-G″ crossover) and G' value at 25°C increased in conjugate systems compared with WPI alone. Stability of gel structures were shown by frequency sweeps. © 2014 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: PI-57283 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Authors would like to thank the financial support of CAI+D PI-57283 project: “Biomaterials development from whey proteins and polysaccharides”; and to Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (CONICET) for the postdoctoral fellowship awarded to María Julia Spotti. 
593 |a Grupo de Biocoloides, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Lactología Industrial (INLAIN), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina 
690 1 0 |a DEXTRANS 
690 1 0 |a MAILLARD CONJUGATION 
690 1 0 |a RHEOLOGICAL PROPERTIES 
690 1 0 |a WHEY PROTEINS 
700 1 |a Martinez, M.J. 
700 1 |a Pilosof, A.M.R. 
700 1 |a Candioti, M. 
700 1 |a Rubiolo, A.C. 
700 1 |a Carrara, C.R. 
773 0 |d 2014  |g v. 39  |h pp. 223-230  |p Food Hydrocolloids  |x 0268005X  |w (AR-BaUEN)CENRE-4766  |t Food Hydrocolloids 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893834727&doi=10.1016%2fj.foodhyd.2014.01.014&partnerID=40&md5=f7132dfb83d693b4c1851e1ce806a7c1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.foodhyd.2014.01.014  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0268005X_v39_n_p223_Spotti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v39_n_p223_Spotti  |y Registro en la Biblioteca Digital 
961 |a paper_0268005X_v39_n_p223_Spotti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75092