Improving efficiency in SMD simulations through a hybrid differential relaxation algorithm

The fundamental object for studying a (bio)chemical reaction obtained from simulations is the free energy profile, which can be directly related to experimentally determined properties. Although quite accurate hybrid quantum (DFT based)-classical methods are available, achieving statistically accura...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ramírez, C.L
Otros Autores: Zeida, A., Jara, G.E, Roitberg, A.E, Martí, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08112caa a22009257a 4500
001 PAPER-14071
003 AR-BaUEN
005 20230518204432.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84907966370 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCTCC 
100 1 |a Ramírez, C.L. 
245 1 0 |a Improving efficiency in SMD simulations through a hybrid differential relaxation algorithm 
260 |b American Chemical Society  |c 2014 
270 1 0 |m Martí, M.A.; Departamento de Química Biológica, FCEN, UBAArgentina 
506 |2 openaire  |e Política editorial 
504 |a He, X., Merz, K.M.J., (2010) J. Chem. Theory Comput., 6 (2), p. 405411 
504 |a Stewart, J., (2009) J. Mol. Modeling, 15 (7), pp. 765-805 
504 |a Dixon, S., Merz, K., Jr., (1996) J. Chem. Phys., 104 (17), pp. 6643-6649 
504 |a Stewart, J., (2009) MOPAC2009, , http://openmopac.net, Stewart Computational Chemistry: Colorado Springs, CO, (accessed Sept. 12, 2014) 
504 |a Bash, P., Field, M., Karplus, M., (1987) J. Am. Chem. Soc., 109, pp. 8092-8094 
504 |a Warshel, A., Levitt, M., (1976) J. Mol. Biol., 103, pp. 227-249 
504 |a Warshel, A., (2003) Annu. Rev. Biophys. Biomol. Struct., 32, pp. 425-443 
504 |a Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A., (1992) J. Comput. Chem., 13, pp. 1011-1021 
504 |a Laio, A., Parrinello, M., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 12562-12566 
504 |a Hénin, J., Chipot, C., (2004) J. Chem. Phys., 121, pp. 2904-2914 
504 |a Zwanzig, R.W., (1954) J. Chem. Phys., 22, pp. 1420-1426 
504 |a Zheng, L., Chen, M., Yang, W., (2009) J. Chem. Phys., 130, p. 234105 
504 |a Jarzynski, C., (1997) Phys. Rev. Lett., 78, pp. 2690-2693 
504 |a Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I.J., Bustamante, C., (2002) Science, 296, pp. 1832-1835 
504 |a Bennett, C.H., (1976) J. Comput. Phys., 22, pp. 245-268 
504 |a Crooks, G.E., (2000) Phys. Rev. e, 61, pp. 2361-2366 
504 |a Car, R., Parrinello, M., (1985) Phys. Rev. Lett., 55, pp. 2471-2474 
504 |a Woo, T.K., Margl, P., Blöchl, P.E., Ziegler, T., (2002) J. Phys. Chem. A, 106, pp. 1173-1182 
504 |a Tuckerman, M.E., Parrinello, M., (1994) J. Chem. Phys., 101, pp. 1302-1315 
504 |a Tuckerman, M.E., Berne, B.J., Martyna, G.J., (1992) J. Chem. Phys., 97, pp. 1990-2001 
504 |a Ozer, G., Valeev, E.F., Quirk, S., Hernandez, R., (2010) J.Chem. Theory Comput., 6, pp. 3026-3038 
504 |a Case, D.A., Darden, T.A., Cheatham, T.E.I., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Kollman, P.A., (2012) AMBER 12, , University of California: San Francisco 
504 |a Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., (2006) Proteins, 65, pp. 712-725 
504 |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., (1983) J. Chem. Phys., 79, pp. 926-935 
504 |a Crespo, A., Martí, M.A., Estrin, D.A., Roitberg, A.E., (2005) J. Am. Chem. Soc., 127, pp. 6940-6941 
504 |a Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., (2003) J. Phys. Chem. B, 107, pp. 13728-13736 
504 |a Zeida, A., Babbush, R., González Lebrero, M.C., Trujillo, M., Radi, R., Estrin, D.A., (2012) Chem. Res. Toxicol., 25, pp. 741-746 
504 |a Cui, Q., Elstner, M., Kaxiras, E., Frauenheim, T., Karplus, M., (2001) J. Phys. Chem. B, 105, pp. 569-585 
504 |a Seabra, D.G.M., Walker, R.C., Elstner, M., Case, D.A., Roitberg, A.E., (2007) J. Phys. Chem. A, 111, pp. 5655-5664 
504 |a Nitsche, M.A., Ferreria, M., Mocskos, E.E., González Lebrero, M.C., (2014) J. Chem. Theory Comput., 10, pp. 959-967 
504 |a González Lebrero, M.C., Bikiel, D.E., Elola, M.D., Estrin, D.A., Roitberg, A.E., (2002) J. Chem. Phys., 117, pp. 2718-2725 
504 |a González Lebrero, M.C., Estrin, D.A., (2007) J. Chem. Theory Comput., 3, pp. 1405-1411 
504 |a Morzan, U.N., Ramírez, F.F., Oviedo, M.B., Sánchez, C.G., Scherlis, D.A., Lebrero, M.C.G., (2014) J. Chem. Phys., 140, pp. 164105-164114 
504 |a Götz, A.W., Clark, M.A., Walker, R.C., (2014) J. Comput. Chem., 35, p. 95108 
504 |a Kast, P., Tewari, Y.B., Wiest, O., Hilvert, D., Houk, K.N., Goldberg, R.N., (1997) J. Phys. Chem. B, 101, pp. 10976-10982 
504 |a Kast, P., Asif-Ullah, M., Hilvert, D., (1996) Tetrahedron Lett., 37, pp. 2691-2694 
504 |a Claeyssens, F., Ranaghan, K.E., Lawan, N., MacRae, S.J., Manby, F.R., Harvey, J.N., Mulholland, A., (2011) J. Org. Biomol. Chem., 9, pp. 1578-1590 
504 |a Chook, Y., Gray, J., Ke, W.H., Lipscomb, (1994) J. Mol. Biol., 240, pp. 476-500 
504 |a Arroyo-Mañez, P., Bikiel, D.E., Boechi, L., Capece, L., Di Lella, S., Estrin, D.A., Martí, M.A., Petruk, A.A., (2011) Biochim. Biophys. Acta, 1814, pp. 1054-1064 
504 |a Turjanski, A.G., Hummer, G., Gutkind, J.S., (2009) J. Am. Chem. Soc., 131, pp. 6141-6148 
504 |a Andrews, P.R., Smith, G.D., Young, I.G., (1973) Biochemistry, 18, pp. 3492-3498 
504 |a Xiong, H., Crespo, A., Marti, M., Estrin, D., Roitberg, A., (2006) Theor. Chem. Acc., 116, pp. 338-346 
504 |a Torras, J., De Seabra, G., Deumens, E., Trickey, S., Roitberg, A., (2008) J. Comput. Chem., 29, pp. 1564-1573 
504 |a Pohorille, A., Jarzynski, C., Chipot, C., (2010) J. Phys. Chem. B, 114, pp. 10235-10253 
504 |a Echeverria, I., Amzel, L.M., (2010) Proteins, 78, pp. 1302-1310 
520 3 |a The fundamental object for studying a (bio)chemical reaction obtained from simulations is the free energy profile, which can be directly related to experimentally determined properties. Although quite accurate hybrid quantum (DFT based)-classical methods are available, achieving statistically accurate and well converged results at a moderate computational cost is still an open challenge. Here, we present and thoroughly test a hybrid differential relaxation algorithm (HyDRA), which allows faster equilibration of the classical environment during the nonequilibrium steering of a (bio)chemical reaction. We show and discuss why (in the context of Jarzynski;s Relationship) this method allows obtaining accurate free energy profiles with smaller number of independent trajectories and/or faster pulling speeds, thus reducing the overall computational cost. Moreover, due to the availability and straightforward implementation of the method, we expect that it will foster theoretical studies of key enzymatic processes. © 2014 American Chemical Society.  |l eng 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, Argentina 
593 |a Departamento de Química Biológica, FCEN, UBA, Buenos Aires, C1428EGA, Argentina 
593 |a Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, UBA-CONICET, Buenos Aires, C1428EGA, Argentina 
593 |a Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, United States 
700 1 |a Zeida, A. 
700 1 |a Jara, G.E. 
700 1 |a Roitberg, A.E. 
700 1 |a Martí, M.A. 
773 0 |d American Chemical Society, 2014  |g v. 10  |h pp. 4609-4617  |k n. 10  |p J. Chem. Theory Comput.  |x 15499618  |t Journal of Chemical Theory and Computation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907966370&doi=10.1021%2fct500672d&partnerID=40&md5=c9e3f2ca1867edb434469a28300c9e15  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ct500672d  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15499618_v10_n10_p4609_Ramirez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v10_n10_p4609_Ramirez  |y Registro en la Biblioteca Digital 
961 |a paper_15499618_v10_n10_p4609_Ramirez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75024