Two resistive switching regimes in thin film manganite memory devices on silicon

Bipolar resistive switching in low cost n-Si/La2/3Ca 1/3MnO3/M (M = Ti + Cu) devices was investigated. For low SET compliance currents (CC), an interfacial-related resistive switching mechanism, associated to the migration of oxygen vacancies close to the manganite/metal interface, is operative. Sim...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rubi, Diego
Otros Autores: Tesler, F., Alposta, I., Kalstein, A., Ghenzi, N., Gomez-Marlasca, F., Rozenberg, M., Levy, P.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16929caa a22008897a 4500
001 PAPER-11218
003 AR-BaUEN
005 20250924094953.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84886424667 
030 |a APPLA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Rubi, Diego 
245 1 0 |a Two resistive switching regimes in thin film manganite memory devices on silicon 
260 |c 2013 
270 1 0 |m Rubi, D.; Centro Atómico Constituyentes (CNEA), San Martín, Buenos Aires, Argentina; email: rubi@tandar.cnea.gov.ar 
504 |a Sawa, A., (2008) Mater. Today, 11, p. 28. , 10.1016/S1369-7021(08)70119-6 
504 |a Waser, R., Dittmann, R., Staikov, G., Szot, K., (2009) Adv. Mater., 21, p. 2632. , 10.1002/adma.200900375 
504 |a Strukov, D.B., Kohlstedt, H., (2012) MRS Bull., 37, p. 108. , 10.1557/mrs.2012.2 
504 |a Shang, D.S., Wang, Q., Chen, L.D., Dong, R., Li, X.M., Zhang, W.Q., (2006) Phys. Rev. B, 73, p. 245427. , 10.1103/PhysRevB.73.245427 
504 |a Nian, Y.B., Strozier, J., Wu, N.J., Chen, X., Ignatiev, A., (2007) Phys. Rev. Lett., 98, p. 146403. , 10.1103/PhysRevLett.98.146403 
504 |a Szot, K., Speier, W., Bihlmayer, G., Waser, R., (2006) Nature Mater., 5, p. 312. , 10.1038/nmat1614 
504 |a Shen, W., Dittmann, R., Breuer, U., Waser, R., (2008) Appl. Phys. Lett., 93, p. 222102. , 10.1063/1.3039809 
504 |a Lee, H.-S., Choi, S.-G., Park, H.-H., Rozenberg, M.J., (2013) Sci. Rep., 3, p. 1704. , 10.1038/srep01704 
504 |a Chang, S.H., Lee, J.S., Chae, S.C., Lee, S.B., Liu, C., Khang, B., Kim, D.W., Noh, T.W., (2009) Phys. Rev. Lett., 102, p. 026801. , 10.1103/PhysRevLett.102.026801 
504 |a Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H., (1994) Science, 264, p. 413. , 10.1126/science.264.5157.413 
504 |a Asamitsu, A., Tomioka, Y., Kuwahara, H., Tokura, Y., (1997) Nature, 388, p. 50. , 10.1038/40363 
504 |a Liu, S.Q., Wu, N.J., Ignatiev, A., (2000) Appl. Phys. Lett., 76, p. 2749. , 10.1063/1.126464 
504 |a Quintero, M., Leyva, A.G., Levy, P., (2005) Appl. Phys. Lett., 86, p. 242102. , 10.1063/1.1948535 
504 |a Das, N., Tsui, S., Xue, Y.Y., Wang, Y.Q., Chu, C.W., (2008) Phys. Rev. B, 78, p. 235418. , 10.1103/PhysRevB.78.235418 
504 |a Jooss, Ch., Hoffmann, J., Fladerer, J., Ehrhardt, M., Beetz, T., Wu, L., Zhu, Y., (2008) Phys. Rev. B, 77, p. 132409. , 10.1103/PhysRevB.77.132409 
504 |a Tulina, N.A., Zverkov, S.A., Mukovskii, Y.M., Shulyatev, D.A., (2001) Europhys. Lett., 56, p. 836. , 10.1209/epl/i2001-00595-4 
504 |a Krisponeit, J.O., Kalkert, C., Damaschke, B., Moshnyaga, V., Samwer, K., (2010) Phys. Rev. B, 82, p. 144440. , 10.1103/PhysRevB.82.144440 
504 |a Sadaf, S.M., Bourim, E.M., Liu, X., Chodhury, S.H., Kim, D.W., Hwang, H., (2012) Appl. Phys. Lett., 100, p. 113505. , 10.1063/1.3694016 
504 |a Fujimoto, M., Koyama, H., Nishi, Y., Suzuki, T., (2007) Appl. Phys. Lett., 91, p. 223504. , 10.1063/1.2816124 
504 |a http://dx.doi.org/10.1063/1.4826484, See supplementary material at E-APPLAB-103-022343 for additional figures; Alposta, I., Kalstein, A., Ghenzi, N., Bengió, S., Zampieri, G., Rubi, D., Levy, P., (2013) IEEE Trans. Magn., 49, p. 4582. , 10.1109/TMAG.2013.2258662 
504 |a Yang, R., Li, X.M., Yu, W.D., Gao, X.D., Shang, D.S., Liu, X.J., Cao, X., Chen, L.D., (2009) Appl. Phys. Lett., 95, p. 072105. , 10.1063/1.3203999 
504 |a Quintero, M., Levy, P., Leyva, A.G., Rozenberg, M.J., (2007) Phys. Rev. Lett., 98, p. 116601. , 10.1103/PhysRevLett.98.116601 
504 |a Rozenberg, M.J., Sánchez, M.J., Weht, R., Acha, C., Gomez-Marlasca, F., Levy, P., (2010) Phys. Rev. B, 81, p. 115101. , 10.1103/PhysRevB.81.115101 
504 |a Rose, A., (1955) Phys. Rev., 97, p. 1538. , 10.1103/PhysRev.97.1538 
504 |a Stille, S., Lenser, Ch., Dittmann, R., Köhl, A., Krug, I., Muenstermann, R., Perlich, J., Waser, R., Tech. Dig. Front. Electron. Mater., 2012, p. 665 
506 |2 openaire  |e Política editorial 
520 3 |a Bipolar resistive switching in low cost n-Si/La2/3Ca 1/3MnO3/M (M = Ti + Cu) devices was investigated. For low SET compliance currents (CC), an interfacial-related resistive switching mechanism, associated to the migration of oxygen vacancies close to the manganite/metal interface, is operative. Simulations using the voltage enhanced oxygen vacancies drift model validate our experimental results. When further increasing the CC, we have observed the onset of a second, filamentary, resistive switching regime with a concomitant collapse of the ON/OFF ratio. We finally demonstrate that it is possible to delay the onset of the filamentary regime by controlling the film thickness. © 2013 AIP Publishing LLC.  |l eng 
536 |a Detalles de la financiación: Universidad Nacional de San Martín, SJ10/05 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIPs 047, 291 
536 |a Detalles de la financiación: Rubi D. 1,2,3 a),b) Tesler F. 1,2 b) Alposta I. 1 Kalstein A. 1,2 Ghenzi N. 1,2 Gomez-Marlasca F. 1 Rozenberg M. 2,4,5 Levy P. 1,2 1 Centro Atómico Constituyentes (CNEA) , San Martín, Buenos Aires, Argentina 2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina 3 Escuela de Ciencia y Tecnología, UNSAM, San Martín , Buenos Aires, Argentina 4 Laboratoire de Physique des Solides, UMR 8502, Université Paris-Sud XI , Orsay 91405, France 5 Departamento de Física J. J. Giambiagi, FCEN, Universidad de Buenos Aires, Ciudad Universitaria Pab. 1 , 1428 Buenos Aires, Argentina a) Author to whom correspondence should be addressed. Electronic mail: rubi@tandar.cnea.gov.ar b) D. Rubi and F. Tesler contributed equally to this work. 14 10 2013 103 16 163506 21 08 2013 06 10 2013 18 10 2013 2013 AIP Publishing LLC 0003-6951/2013/103(16)/163506/5/ {ARS}30.00 Bipolar resistive switching in low cost n-Si/La 2/3 Ca 1/3 MnO 3 /M (M = Ti + Cu) devices was investigated. For low SET compliance currents (CC), an interfacial-related resistive switching mechanism, associated to the migration of oxygen vacancies close to the manganite/metal interface, is operative. Simulations using the voltage enhanced oxygen vacancies drift model validate our experimental results. When further increasing the CC, we have observed the onset of a second, filamentary, resistive switching regime with a concomitant collapse of the ON/OFF ratio. We finally demonstrate that it is possible to delay the onset of the filamentary regime by controlling the film thickness. SJ10/05 047 291 crossmark The electric-pulse-induced resistance switching (RS) effect 1,2 has been extensively studied in the past years due to the possibility of developing resistance random access memories (RRAM), which remains a strong candidate for next generation of non-volatile memories. RRAM technology is very attractive due to its simple metal/oxide/metal structure, high writing/erasing speed, high storage density and low power consumption. 3 Although different models have been proposed to explain the RS behavior, such as trap controlled space-charge-limited-current conduction, 4 electrochemical migration of oxygen, 5,6 oxidation/reduction reaction, 7 oxygen-vacancy driven correlation effects, 8 and formation/rupture of conducting nanofilaments, 9 the physics behind the RS mechanism has not been completely elucidated so far. The celebrated magnetoresistive manganites, 10,11 from the initial report by Ignatiev et al. , 12 also displayed RS effects both in ceramics and thin films. 13–16 Most papers reporting RS in manganite thin films deal with epitaxial layers 17,18 or polycrystalline films grown on platinized silicon; 4,19 here we show that a reliable RS behavior can be obtained by growing La 2/3 Ca 1/3 MnO 3 directly on n-type silicon, which is a low-cost option that could also facilitate device integration with standard electronics. We obtained ON/OFF ratios up to ∼400 and good reproducibility of the electric response. Finally, we demonstrate the change from an interfacial-related RS into a filamentary regime, which is controlled by the SET compliance current. We grew 100 nm La 2/3 Ca 1/3 MnO 3 (LCMO) manganite thin films by pulsed laser deposition (pulsed Q-switched Spectra Physics Laser with λ = 355 nm and a repetition rate of 10 Hz) at an oxygen pressure of 0.13 mbar and a temperature of 680 °C. Films were grown on top of highly conductive n-type silicon (ρ < 0.005 Ω cm), which also acted as bottom electrode. We used as top electrode a bilayer of Ti (10 nm) and Cu (100 nm), fabricated by sputtering and shaped by means of standard optical lithography. The top electrode areas ranged between 0.049 mm 2 and 0.785 mm 2 . The films thickness was estimated by cross-view scanning electron microscopy. X-ray diffraction showed that the films resulted single phase and polycrystalline. 20 X-ray photoemission spectroscopy (XPS) suggests that the Mn valence is +2.7, indicating an oxygen stochiometry of ∼2.68. This oxygen deficiency was previously shown to improve the electrical performance of the devices. 21 The electrical characterization was performed with a Keithley 2612 SMU hooked to a probe station. The acquisition software was programmed on the Lab view environment. We have recorded simultaneously, at room temperature, pulsed I-V curves and Hysteresis Switching Loops (HSL). 5 The pulsed I-V curve consists on applying a sequence of voltage pulses of different amplitudes (0 → 8 V → −8 V → 0, with a time-width of a few milliseconds and a step of 50 mV) while the current is measured during the application of the pulse. We recall that this is a dynamic measurement. Additionally, after the application of each of these pulses we apply a small reading voltage of 100 mV that allows us to measure the current and evaluate the remnant resistance state HSL. Figure 1(a) displays the electrode configuration and polarities used for the electrical measurement. Figure 1(b) shows the dynamic I-V curve corresponding to one of the samples. The sample is initially in a High Resistance State (HRS) and remains in this state until a positive voltage of ∼6 V is applied, when there is a sudden transition to a Low Resistance State (LRS, SET process). A Compliance Current (CC) of 30 mA is externally programmed to avoid device damage during the SET process. When the voltage is decreased, the system remains in the low resistance state until a negative voltage of ∼−2.5 V is reached, when there is a current drop reflecting the transition from low to high resistance (RESET process). We have found a fairly symmetric behavior between the positive and negative regions of the I-V curve, indicating that the presence of the native ultrathin SiO x layer at the silicon (n-type)/manganite (p-type) interface prevents the formation of a p-n junction and the appearance of a rectifying behavior. 22 Figure 1(c) displays the corresponding HSL. One can see two well defined resistance states of ∼170 Ω and ∼38 kΩ, which gives an ON/OFF ratio of ∼220. We tested the stability of the HSLs against repeated cycling at a fixed SET CC, and we found that R HIGH and R LOW remain reasonably stable for 70 consecutive loops. 20 The squared shape of the HSL suggests the existence of only one active interface (plausibly the metal/oxide one, according to previously reported results in manganite samples with different metallic electrodes 23 ); otherwise, a more complex shape such as the so-called “table with legs” would be expected. 24,25 Figure 1(d) displays the positive stimulus branch of the I-V curve in a log-log scale. It is found that the HRS displays an ohmic behavior (I ∝ V) for low voltages (V < 1 V), followed by a I ∝ V (1.3) regime for intermediate voltages and a steep increase region (I ∝ V (8.5) ) for voltages close to the resistive transition to LRS. On the other hand, for this 30 mA SET CC, the LRS follows a I ∝ V (2) law that could indicate the presence of a space-charge-limited current (SCLC) conduction mechanism. 26 We have seen that both HRS and LRS are strongly dependant on the SET CC used on each I-V cycle. Figure 2(a) shows the evolution of R HIGH and R LOW as a function of CC for a top electrode area of 0.196 mm 2 , while Figure 2(b) displays the corresponding ON/OFF ratio. It is found that initially R HIGH remains nearly constant as CC increases, while R LOW decreases monotonically, increasing in this way the ON/OFF ratio up to ∼400 for CC ∼90 mA. For higher CC values, R HIGH starts to drop pronouncedly, the ratio ON/OFF decreasing concomitantly by almost two orders of magnitude. This behavior is qualitatively similar (but considerably more stable) when compared to the case of LCMO films with Ag top electrodes. 21 We consistently reproduced the electrical behavior for low CCs by using the Voltage Enhanced Oxygen Vacancies drift (VEOV) model introduced in Ref. 25 . This model assumes an interface-type RS mechanism where the electrical transport across the sample is spatially inhomogeneous and takes place through several parallel conduction paths. The paths are assumed to be randomly distributed, hence producing a conductance proportional to the area. Within the VEOV model, since the paths are similar, one may model their typical behavior with a single resistor network, which is assumed to be one-dimensional for simplicity. Each element of the resistor network is meant to represent a small domain of the conductive path of nanometric size that is characterized by a local density of oxygen vacancies. In transition metal oxides, the resistivity is severely affected by the local oxygen stoichiometry. Hence, the model assumes that the resistivity of each nanodomain ρ i is proportional to the local density of oxygen vacancies δ i according to ρ i  = A α δ I , with α = I or B corresponding to interface or bulk nanodomains, respectively. The proportionality between ρ and δ follows from the assumption that oxygen vacancies disrupt the conduction through the Mn-O-Mn chains. The resistivity of the nanodomains close to the metal/oxide interface is much higher that of those located at bulk regions, due to the formation of a potential barrier at the metal/oxide interface, implying that A I  ≫ A B . 25 The application of electrical stress induces the migration of oxygen vacancies though the network according to the equation p i , i + 1 = δ i ( 1 − δ i + 1 ) exp ( − V 0 , i + Δ V i ) , (1) which determines the oxygen vacancy transfer probability between adjacent sites. V 0,i (i = B and I) are dimensionless constants related to the activation energies for vacancies diffusion both in bulk and interfacial sites, respectively. Δ V i are th 
593 |a Centro Atómico Constituyentes (CNEA), San Martín, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Escuela de Ciencia y Tecnología, UNSAM, San Martín , Buenos Aires, Argentina 
593 |a Laboratoire de Physique des Solides, UMR 8502, Université Paris-Sud XI, Orsay 91405, France 
593 |a Departamento de Física J. J. Giambiagi, FCEN, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
690 1 0 |a COMPLIANCE CURRENT 
690 1 0 |a DRIFT MODEL 
690 1 0 |a LOW COSTS 
690 1 0 |a ON/OFF RATIO 
690 1 0 |a RESISTIVE SWITCHING 
690 1 0 |a RESISTIVE SWITCHING MECHANISMS 
690 1 0 |a COMPLIANT MECHANISMS 
690 1 0 |a MANGANESE OXIDE 
690 1 0 |a OXYGEN VACANCIES 
690 1 0 |a SWITCHING SYSTEMS 
700 1 |a Tesler, F. 
700 1 |a Alposta, I. 
700 1 |a Kalstein, A. 
700 1 |a Ghenzi, N. 
700 1 |a Gomez-Marlasca, F. 
700 1 |a Rozenberg, M. 
700 1 |a Levy, P. 
773 0 |d 2013  |g v. 103  |k n. 16  |p Appl Phys Lett  |x 00036951  |w (AR-BaUEN)CENRE-346  |t Applied Physics Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886424667&doi=10.1063%2f1.4826484&partnerID=40&md5=47c0bc98496651c105538830a0ca6101  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1063/1.4826484  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00036951_v103_n16_p_Rubi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00036951_v103_n16_p_Rubi  |y Registro en la Biblioteca Digital 
961 |a paper_00036951_v103_n16_p_Rubi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72171