Rheological properties of whey protein and dextran conjugates at different reaction times

Protein/polysaccharide conjugates have been widely studied because of their good emulsifying properties and their potential use as food ingredients. However, there is little information about the use of these conjugates in gel systems. Rheological properties of conjugates of whey protein isolate (WP...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Spotti, M.J
Otros Autores: Martinez, M.J, Pilosof, A.M.R, Candioti, M., Rubiolo, A.C, Carrara, C.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14954caa a22011057a 4500
001 PAPER-10931
003 AR-BaUEN
005 20230518204101.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84890324744 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FOHYE 
100 1 |a Spotti, M.J. 
245 1 0 |a Rheological properties of whey protein and dextran conjugates at different reaction times 
260 |c 2014 
270 1 0 |m Spotti, M.J.; Grupo de Biocoloides, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina; email: juliaspotti@yahoo.com.ar 
506 |2 openaire  |e Política editorial 
504 |a Akhtar, M., Dickinson, E., Whey protein-maltodextrin conjugates as emulsifying agents: an alternative to gum arabic (2007) Food Hydrocolloids, 21 (4), pp. 607-616 
504 |a Ashie, I.N., Lanier, T.C., High pressure effects on gelation of surimi and turkey breast muscle enhanced by microbial transglutaminase (1999) Journal of Food Science, 64, pp. 704-708 
504 |a Avanza, M.V., Puppo, M.C., Añón, M.C., Rheological characterization of amaranth protein gels (2005) Food Hydrocolloids, 19, pp. 889-898 
504 |a Baeza, R., Pilosof, A., Mixed biopolymer gels systems of β-lactoglobulin and non-gelling gum (2001) Foods colloids - Fundamentals of formulation, pp. 392-403. , The Royal Society of Chemistry, Cambridge, E. Dickinson, R. Miller (Eds.) 
504 |a Baeza, R.I., Pilosof, A.M.R., Calorimetric studies of thermal denaturation of β-lactoglobulin in the presence of polysaccharides (2002) LWT - Food Science and Technology, 35, pp. 393-399 
504 |a Barbut, S., Foegeding, E.A., Ca21-induced gelation of pre-heated whey protein isolate (1993) Journal of Food Science, 58, pp. 867-871 
504 |a Boye, J.I., Ma, C.-Y., Harwalkar, V.R., Thermal denaturation and coagulation of proteins (1997) Food proteins and their applications, , Marcel Dekker Inc., New York, S. Damadoran, A. Paraf (Eds.) 
504 |a Bryant, C.M., McClements, D.J., Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey (1998) Trends in Food Science and Technology, 9, pp. 143-151 
504 |a Capron, I., Nicolai, T., Durand, D., Heat induced aggregation and gelation of β-lactoglobulin in the presence of κ-carrageenan (1999) Food Hydrocolloids, 13 (1), pp. 1-5 
504 |a Cheftel, J.C., Cuq, J.L., Lorient, D., Modificaciones de las proteínas (1989) Proteínas alimentarias. Bioquímica. Propiedades funcionales. Valor nutritivo. Modificaciones químicas, pp. 304-309. , Editorial ACRIBIA S.A., Zaragoza España 
504 |a Chevalier, F., Chobert, J.-M., Genot, C., Haertlé, T., Scavenging of free radicals antimicrobial and cytotoxic activities of the Maillard reaction products of β-lactoglobulin glycated with several sugars (2001) Journal of Agricultural and Food Chemistry, 49, pp. 5031-5038 
504 |a Choi, S.J., Kim, H.J., Park, K.H., Moon, T.W., Molecular characteristics of ovalbumin-dextran conjugates formed through the Maillard reaction (2005) Food Chemistry, 92, pp. 93-99 
504 |a Darewicz, M., Dziuba, J., The effect of glycosylation on emulsifying and structural properties of β-casein (2001) Nahrung, 45, pp. 15-20 
504 |a Dickinson, E., Izgi, E., Foam stabilization by protein-polysaccharide complexes (1996) Colloids and Surfaces A, 113, pp. 191-201 
504 |a Diftis, N., Kiosseoglou, V., Improvement of emulsifying properties of soybean protein isolate by conjugation with carboxymethyl cellulose (2003) Food Chemistry, 81, pp. 1-6 
504 |a Diftis, N., Kiosseoglou, V., Physicochemical properties of dry-heated soy protein isolate-dextran mixtures (2006) Food Chemistry, 96, pp. 228-233 
504 |a Dunlap, C.A., CÔté, G.L., β-Lactoglobulin-dextran conjugates: effect of polysaccharide size on emulsion stability (2005) Journal of Agricultural and Food Chemistry, 53, pp. 419-423 
504 |a Einhorn-Stoll, U., Ulbrich, M., Sever, S., Kunzek, H., Formation of milk protein pectin conjugates with improved emulsifying properties by controlled dry heating (2005) Food Hydrocolloids, 19, pp. 329-340 
504 |a Gerrard, J.A., Brown, P.K., Fayle, S.E., Maillard crosslinking of food proteins II: the reactions of gluteraldehyde, formaldehyde and glyceraldehydes with wheat proteins invitro and in situ (2003) Food Chemistry, 80, pp. 35-43 
504 |a Goloberg, T., Weijng, C., Melpomeni, M., Advanced glycoxidation end products in commonly consumed foods (2004) Journal of the American Dietetic Association, 104, pp. 1287-1291 
504 |a Hattori, M., Nagasawa, K., Ametani, A., Kaminogawa, S., Takahashi, K., Functional changes in β-lactoglobulin by conjugation with carboxymethyl dextran (1994) Journal of Agricultural and Food Chemistry, 42, pp. 2120-2125 
504 |a Hattori, M., Ogino, A., Nakai, H., Takahashi, K., Functional improvement of β-lactoglobulin by conjugating with alginate lyase-lysate (1997) Journal of Agricultural and Food Chemistry, 45, pp. 703-708 
504 |a Jimenez-Castaño, L., Lópes-Fandiño, R., Olano, A., Villamiel, M., Study on β-lactoglobulin glycosylation with dextran, effect on solubility and heat stability (2005) Food Chemistry, 93, pp. 689-695 
504 |a Katayama, S., Shima, J., Saeki, H., Solubility improvement of shellfish muscle proteins by reaction with glucose and its soluble state in low-ionic strength medium (2002) Journal of Agricultural and Food Chemistry, 50, pp. 4327-4332 
504 |a Kato, A., Industrial applications of Maillard-type protein-polysaccharide conjugates (2002) Journal of Food Science and Technology, 8, pp. 193-199 
504 |a Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685 
504 |a Le Bon, C., Nicolai, T., Durand, D., Growth and structure of aggregates of heat denatured β-lactoglobulin (1999) International Journal of Food Science and Technology, 34, pp. 451-465 
504 |a Liu, J., Ru, Q., Ding, Y., Glycation a promising method for food protein modification: physicochemical properties and structure, a review (2012) Food Research International, 49, pp. 170-183 
504 |a Martinez, M.J., Farías, M.E., Pilosof, A.M.R., The dynamics of heat gelation of casein glycomacropeptide-β-lactoglobulin mixtures as affected by interactions in the aqueous phase (2010) International Dairy Journal, 20, pp. 580-588 
504 |a McClements, D.J., Keogh, M.K., Physical properties of coldsetting gels formed from heat-denatured whey protein isolate (1995) Journal of the Science of Food and Agriculture, 69, pp. 7-14 
504 |a McGookin, B.J., Augustin, M.-A., Antioxidant activity of casein and Maillard reaction products from casein-sugar mixtures (1991) Journal of Dairy Research, 58, pp. 313-320 
504 |a Medrano, A., Abirached, C., Panizzolo, L., Moyna, P., Añón, M.C., The effect of glycation on foam and structural properties of β-lactoglobulin (2009) Food Chemistry, 113, pp. 127-133 
504 |a Miller, A., Gerrard, J., The Maillard reaction and food protein crosslinking (2005) Progress in Food Biopolymer Research, 1, pp. 69-86 
504 |a Nakamura, S., Ogawa, M., Nakai, S., Kato, A., Kitts, D., Antioxidant activity of a Maillard-type phosvitin-galactomannan conjugate with emulsifying properties and heat stability (1998) Journal of Agricultural and Food Chemistry, 46, pp. 3958-3963 
504 |a Oliver, C.M., Melton, L.D., Stanley, R.A., Creating protein with novel functionality via the Maillard reaction: a review (2006) Critical Review in Food Science and Nutrition, 46, pp. 337-350 
504 |a Ordoñez Pereda, J.A., Cambero Rodriguez, M.S., Fernandez Alvarez, L., García de Fernando Miguillón, G.D., de la Hoz Perales, L., Selgas Certero, M.D., Carbohidratos (1998) Tecnología de los alimentos, 1, pp. 86-91. , Editorial SINTESIS S.A., Madrid España, J.A. Ordoñez Pereda (Ed.) Componentes de los alimentos procesos 
504 |a Ould Eleya, M.M., Turgeon, S.L., Rheology of κ-carrageenan and β-lactoglobulin mixed gels (2000) Food Hydrocolloids, 14, pp. 29-40 
504 |a Renkema, J.M.S., Van Vliet, T., Heat-induced gel formation by soy proteins at neutral pH (2002) Journal of Agricultural and Food Chemistry, 50, pp. 1569-1573 
504 |a Ross, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnology Progress, 7, pp. 49-53 
504 |a Sato, R., Sawabe, T., Kishimura, H., Hayashi, K., Saeki, H., Preparation of neoglycoprotein from carp myofibrillar protein and alginate oligosaccharide: improved solubility in low ionic strength medium (2000) Journal of Agricultural and Food Chemistry, 48, pp. 17-21 
504 |a Shepherd, R., Robertson, A., Ofman, D., Dairy glycoconjugate emulsifiers: casein-maltodextrins (2000) Food Hydrocolloids, 14, pp. 281-286 
504 |a Spotti, M.J., Perduca, M., Piagentini, A., Santiago, L., Rubiolo, A., Carrara, C., Gel mechanical properties of milk whey protein-dextran conjugates obtained by Maillard reaction (2013) Food Hydrocolloids, 31 (1), pp. 26-32 
504 |a Spotti, M.J., Santiago, L.G., Rubiolo, A.C., Carrara, C.R., Mechanical and microstructural properties of milk whey protein/espina corona gum mixed gels (2012) LWT - Food Science and Technology, 48, pp. 69-74 
504 |a Stading, M., Hermansson, A.M., Viscoelastic behaviour of β-lactoglobulin structures (1990) Food Hydrocolloids, 4 (2), pp. 121-135 
504 |a Sun, W., Yu, S., Yang, X., Wang, J., Zhang, J., Zhang, Y., Study on the rheological properties of heat-induced whey protein isolate-dextran conjugate gel (2011) Food Research International, 44, pp. 3259-3263 
504 |a Tavares, C., Lopes da Silva, J.A., Rheology of galactomannan-whey protein mixed systems (2003) International Dairy Journal, 13, pp. 699-706 
504 |a Tavares, C., Monteiro, S.R., Moreno, N., Lopes da Silva, J.A., Does the branching degree of galactomannans influence their effect on whey protein gelation? (2005) Colloids and Surfaces A, Physicochemical and Engineering Aspects, pp. 213-219 
504 |a Turgeon, S.L., Beaulieu, M., Schmitt, C., Sanchez, C., Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects (2003) Current Opinion in Colloid and Interface Science, 8, pp. 401-414 
504 |a Usman, I., Hosono, A., Antimutagenic activity of Maillard reaction products against mutagenic heated tauco (1998) Italian Journal of Food Science, 9, pp. 267-276 
504 |a Verheul, M., Pedersen, J.S., Roefs, S.P.F.M., de Kruif, K.G., Association behavior of native β-lactoglobulin (1999) Biopolymers, 49, pp. 11-20 
504 |a Xu, C., Yang, X., Yu, J., Qi, J., Guo, R., Sun, W., The effect of glycosylation with dextran chains of differing lengths on the thermal aggregation of β-conglycinin and glycinin (2010) Food Research International, 43 (9), pp. 2270-2276 
504 |a Zacharius, R., Zel, L.T., Morrison, J., Woodlock, J., Glycoprotein staining following electrophoresis on acrylamide gels polyacrylamide (1968) Analytical Biochemistry, 30 (1), pp. 148-152 
504 |a Zhu, D., Damodaran, S., Lucey, J.A., Physicochemical and emulsifying properties of whey protein isolate (WPI)-dextran conjugates produced in aqueous solution (2010) Journal of Agricultural and Food Chemistry, 58, pp. 2988-2994 
520 3 |a Protein/polysaccharide conjugates have been widely studied because of their good emulsifying properties and their potential use as food ingredients. However, there is little information about the use of these conjugates in gel systems. Rheological properties of conjugates of whey protein isolate (WPI) and dextran (DX) of 15kDa obtained by Maillard reaction (RM) at different incubation times (2, 5 and 9 days) were studied. Conjugation was confirmed by electrophoresis, conformational changes were studied by DSC and rheological properties were determined by means of an oscillatory rheometer with a temperature ramp ranging from 25 to 90°C. After each rheological measure, a mechanical spectrum from 0.01 to 10Hz was also obtained. Electrophoresis indicated the presence of WPI/DX conjugates for all incubation days, though their molecular weight could not be determined. Both, time and temperature of gelation (G' G″ crossover), increased in WPI/DX conjugate systems compared with WPI without DX (same time of incubation). However, these parameters decreased in WPI/DX mixed system. G' values at 25°C decreased in WPI/DX conjugates and increased in WPI/DX mixed system with respect to WPI alone. Frequency sweeps showed that all gels were stable. © 2013 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: PI-57283 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The authors would like to thank the financial support of CAI+D PI-57283 project: “Biomaterials development from whey proteins and polysaccharides”; and to Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (CONICET) for the postdoctoral fellowship awarded to María Julia Spotti. 
593 |a Grupo de Biocoloides, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Lactología Industrial (INLAIN), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina 
690 1 0 |a DEXTRAN 
690 1 0 |a MAILLARD REACTION 
690 1 0 |a RHEOLOGICAL PROPERTIES 
690 1 0 |a WHEY PROTEINS 
700 1 |a Martinez, M.J. 
700 1 |a Pilosof, A.M.R. 
700 1 |a Candioti, M. 
700 1 |a Rubiolo, A.C. 
700 1 |a Carrara, C.R. 
773 0 |d 2014  |g v. 38  |h pp. 76-84  |p Food Hydrocolloids  |x 0268005X  |w (AR-BaUEN)CENRE-4766  |t Food Hydrocolloids 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890324744&doi=10.1016%2fj.foodhyd.2013.11.017&partnerID=40&md5=2f4658007e7274ae2d3590d7f550967d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.foodhyd.2013.11.017  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0268005X_v38_n_p76_Spotti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v38_n_p76_Spotti  |y Registro en la Biblioteca Digital 
961 |a paper_0268005X_v38_n_p76_Spotti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 71884