Rango asociado a una curva proyectiva

En este trabajo se estudia la noción de rango asociado a una curva C ⊂ Pn no degenerada y no singular. En el caso en que C ⊂ Pd es la curva de Veronese de grado d, la definición de rango se relaciona con el rango de formas binarias. Se caracterizan todos los conjuntos de puntos formas de rango const...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Comas, Gonzalo
Formato: Tesis Doctoral
Lenguaje:Español
Publicado: 2007
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/tesis_n4085_Comas
Aporte de:
id todo:tesis_n4085_Comas
record_format dspace
spelling todo:tesis_n4085_Comas2023-10-03T12:46:21Z Rango asociado a una curva proyectiva Comas, Gonzalo PROBLEMA DE WARING RANGO DE FORMAS VARIEDADES SECANTES CURVAS ELIPTICAS PLANE SECANT FORMULA WARING´S PROBLEM RANK OF FORMS SECANT VARIETIES ELLIPTIC CURVES PLANE SECANT FORMULA En este trabajo se estudia la noción de rango asociado a una curva C ⊂ Pn no degenerada y no singular. En el caso en que C ⊂ Pd es la curva de Veronese de grado d, la definición de rango se relaciona con el rango de formas binarias. Se caracterizan todos los conjuntos de puntos formas de rango constante y se da un algoritmo para calcular el rango de una forma. Para C una curva de género g ≥ 1, inmersa en Pn por el sistema lineal completo asociado a un fibrado lineal no especial, se caracterizan algunos de los conjuntos de puntos de rango constante y se dan cotas óptimas para el rango (que dependen del grado del fibrado lineal). En el caso en que C es una curva elíptica (esto es g = 1) se relacionan los resultados obtenidos con la “Plane Secant Formula” y una variante de esta, que son fórmulas enumerativas de planos multisecantes y multitangentes de curvas. In this work we study the notion of rank associated to a nonsingular and nondegenerated curve C ⊂ Pn. In the case where C ⊂ Pd is the Veronese curve of degree d, the definition of rank is related with the rank of binary forms. We characterize the sets of forms having constant rank and we give an algorithm to determine the rank of a form. For C a curve of genus g ≥ 1 inmersed in Pn by the complete linear system associated to a nonspecial line bundle, we describe some of the sets of points having constant rank and we give optimal bounds for the rank (which depend on the degree of the line bundle). In the case where C is an elliptic curve (ie. g = 1), we relate the results to the “Plane Secant Formula” and a variant of it, which are enumerative formulas for multisecant and multitangent planes of curves. Fil: Comas, Gonzalo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2007 Tesis Doctoral PDF Español info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar http://hdl.handle.net/20.500.12110/tesis_n4085_Comas
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Español
orig_language_str_mv Español
topic PROBLEMA DE WARING
RANGO DE FORMAS
VARIEDADES SECANTES
CURVAS ELIPTICAS
PLANE SECANT FORMULA
WARING´S PROBLEM
RANK OF FORMS
SECANT VARIETIES
ELLIPTIC CURVES
PLANE SECANT FORMULA
spellingShingle PROBLEMA DE WARING
RANGO DE FORMAS
VARIEDADES SECANTES
CURVAS ELIPTICAS
PLANE SECANT FORMULA
WARING´S PROBLEM
RANK OF FORMS
SECANT VARIETIES
ELLIPTIC CURVES
PLANE SECANT FORMULA
Comas, Gonzalo
Rango asociado a una curva proyectiva
topic_facet PROBLEMA DE WARING
RANGO DE FORMAS
VARIEDADES SECANTES
CURVAS ELIPTICAS
PLANE SECANT FORMULA
WARING´S PROBLEM
RANK OF FORMS
SECANT VARIETIES
ELLIPTIC CURVES
PLANE SECANT FORMULA
description En este trabajo se estudia la noción de rango asociado a una curva C ⊂ Pn no degenerada y no singular. En el caso en que C ⊂ Pd es la curva de Veronese de grado d, la definición de rango se relaciona con el rango de formas binarias. Se caracterizan todos los conjuntos de puntos formas de rango constante y se da un algoritmo para calcular el rango de una forma. Para C una curva de género g ≥ 1, inmersa en Pn por el sistema lineal completo asociado a un fibrado lineal no especial, se caracterizan algunos de los conjuntos de puntos de rango constante y se dan cotas óptimas para el rango (que dependen del grado del fibrado lineal). En el caso en que C es una curva elíptica (esto es g = 1) se relacionan los resultados obtenidos con la “Plane Secant Formula” y una variante de esta, que son fórmulas enumerativas de planos multisecantes y multitangentes de curvas.
format Tesis Doctoral
author Comas, Gonzalo
author_facet Comas, Gonzalo
author_sort Comas, Gonzalo
title Rango asociado a una curva proyectiva
title_short Rango asociado a una curva proyectiva
title_full Rango asociado a una curva proyectiva
title_fullStr Rango asociado a una curva proyectiva
title_full_unstemmed Rango asociado a una curva proyectiva
title_sort rango asociado a una curva proyectiva
publishDate 2007
url http://hdl.handle.net/20.500.12110/tesis_n4085_Comas
work_keys_str_mv AT comasgonzalo rangoasociadoaunacurvaproyectiva
_version_ 1807315553941979136