Adaptability of statistical process control tools to modifications in plant operation strategies

The influence of modifications in the operation strategy of a chemical plant on the output of statistical process control (SPC) tools developed for fault detection is examined. Particularly, the square prediction error (SPE) and the Hotelling T2 charts are analyzed for reported problems. The effect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maestri, M.L., Cassanello, M.C., Horowitz, G.I., Atanor; Compania Mega S.A.; Consejo Federal de Inversiones (CFI); Dow; et al.; Petroquimica Rio Tercero SA (PRIII)
Formato: CONF
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_NIS12852_v_n_p_Maestri
Aporte de:
id todo:paper_NIS12852_v_n_p_Maestri
record_format dspace
spelling todo:paper_NIS12852_v_n_p_Maestri2023-10-03T16:45:52Z Adaptability of statistical process control tools to modifications in plant operation strategies Maestri, M.L. Cassanello, M.C. Horowitz, G.I. Atanor; Compania Mega S.A.; Consejo Federal de Inversiones (CFI); Dow; et al.; Petroquimica Rio Tercero SA (PRIII) Fault detection Fault diagnosis Process control Chemical detection Chemical modification Chemical plants Failure analysis Fault detection Process control Data bank Hotelling T In-plant operations Operation strategy Square prediction errors Statistical process controls (SPC) Statistical process control The influence of modifications in the operation strategy of a chemical plant on the output of statistical process control (SPC) tools developed for fault detection is examined. Particularly, the square prediction error (SPE) and the Hotelling T2 charts are analyzed for reported problems. The effect of training the tools either with an extended historic databank obtained under standard operation or including also non-conventional conditions is studied. The ability of the tools to provide a specific alarm is examined in both cases. In addition, the sensitivity for diagnosing a given problem by analyzing the contributions per variable to the SPE and the T2 is addressed. Fil:Maestri, M.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Cassanello, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Horowitz, G.I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. CONF info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_NIS12852_v_n_p_Maestri
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fault detection
Fault diagnosis
Process control
Chemical detection
Chemical modification
Chemical plants
Failure analysis
Fault detection
Process control
Data bank
Hotelling T
In-plant operations
Operation strategy
Square prediction errors
Statistical process controls (SPC)
Statistical process control
spellingShingle Fault detection
Fault diagnosis
Process control
Chemical detection
Chemical modification
Chemical plants
Failure analysis
Fault detection
Process control
Data bank
Hotelling T
In-plant operations
Operation strategy
Square prediction errors
Statistical process controls (SPC)
Statistical process control
Maestri, M.L.
Cassanello, M.C.
Horowitz, G.I.
Atanor; Compania Mega S.A.; Consejo Federal de Inversiones (CFI); Dow; et al.; Petroquimica Rio Tercero SA (PRIII)
Adaptability of statistical process control tools to modifications in plant operation strategies
topic_facet Fault detection
Fault diagnosis
Process control
Chemical detection
Chemical modification
Chemical plants
Failure analysis
Fault detection
Process control
Data bank
Hotelling T
In-plant operations
Operation strategy
Square prediction errors
Statistical process controls (SPC)
Statistical process control
description The influence of modifications in the operation strategy of a chemical plant on the output of statistical process control (SPC) tools developed for fault detection is examined. Particularly, the square prediction error (SPE) and the Hotelling T2 charts are analyzed for reported problems. The effect of training the tools either with an extended historic databank obtained under standard operation or including also non-conventional conditions is studied. The ability of the tools to provide a specific alarm is examined in both cases. In addition, the sensitivity for diagnosing a given problem by analyzing the contributions per variable to the SPE and the T2 is addressed.
format CONF
author Maestri, M.L.
Cassanello, M.C.
Horowitz, G.I.
Atanor; Compania Mega S.A.; Consejo Federal de Inversiones (CFI); Dow; et al.; Petroquimica Rio Tercero SA (PRIII)
author_facet Maestri, M.L.
Cassanello, M.C.
Horowitz, G.I.
Atanor; Compania Mega S.A.; Consejo Federal de Inversiones (CFI); Dow; et al.; Petroquimica Rio Tercero SA (PRIII)
author_sort Maestri, M.L.
title Adaptability of statistical process control tools to modifications in plant operation strategies
title_short Adaptability of statistical process control tools to modifications in plant operation strategies
title_full Adaptability of statistical process control tools to modifications in plant operation strategies
title_fullStr Adaptability of statistical process control tools to modifications in plant operation strategies
title_full_unstemmed Adaptability of statistical process control tools to modifications in plant operation strategies
title_sort adaptability of statistical process control tools to modifications in plant operation strategies
url http://hdl.handle.net/20.500.12110/paper_NIS12852_v_n_p_Maestri
work_keys_str_mv AT maestriml adaptabilityofstatisticalprocesscontroltoolstomodificationsinplantoperationstrategies
AT cassanellomc adaptabilityofstatisticalprocesscontroltoolstomodificationsinplantoperationstrategies
AT horowitzgi adaptabilityofstatisticalprocesscontroltoolstomodificationsinplantoperationstrategies
AT atanorcompaniamegasaconsejofederaldeinversionescfidowetalpetroquimicariotercerosapriii adaptabilityofstatisticalprocesscontroltoolstomodificationsinplantoperationstrategies
_version_ 1807314798506934272