Strong electron correlation effects in non-volatile electronic memory devices
We propose a theoretical domain-tunneling (DT) model of the resistance switching phenomenon that is often experimentally observed in metal-semiconductor-metal sandwich structures which is considered as a possible non-volatile memory devices. The DT model is incorporated with a metal-insulator transi...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | CONF |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_NIS03824_v_n_p131_Inoue |
Aporte de: |
Sumario: | We propose a theoretical domain-tunneling (DT) model of the resistance switching phenomenon that is often experimentally observed in metal-semiconductor-metal sandwich structures which is considered as a possible non-volatile memory devices. The DT model is incorporated with a metal-insulator transition due to strong electron correlations at the semiconductor/metal interface. We have also prepared experimentally a Pt/NiO/Pt test device and have observed the resistance switching. The calculated results of the DT model are compared to the experimental results, manifesting that this sandwich structure could be the realisation of a novel strongly correlated electron device. © 2005 IEEE. |
---|