Optimal design techniques for distributed parameter systems

A wide number of inverse problems consist in selecting best parameter values of a given mathematical model based fits to measured data. These are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given d...

Descripción completa

Detalles Bibliográficos
Autores principales: Banks, H.T., Rubio, D., Saintier, N., Troparevsky, M.I., Kang W., Zhang Q., Fahroo F.
Formato: CONF
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_97815108_v_n_p83_Banks
Aporte de:
id todo:paper_97815108_v_n_p83_Banks
record_format dspace
spelling todo:paper_97815108_v_n_p83_Banks2023-10-03T16:43:48Z Optimal design techniques for distributed parameter systems Banks, H.T. Rubio, D. Saintier, N. Troparevsky, M.I. Kang W. Zhang Q. Fahroo F. Estimation Optimal systems Optimization Distributed parameter systems Optimal locations Optimal observation Optimization problems Optimization scheme Ordinary least squares Sensitivity functions Source identification Inverse problems A wide number of inverse problems consist in selecting best parameter values of a given mathematical model based fits to measured data. These are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given data. The problem of collecting data in the "best way" in order to assure a statistically efficient estimate of the parameter is known as Optimal Design. In this work we consider the problem of finding optimal locations for source identification in the 3D unit sphere from data on its boundary. We apply three different optimal design criteria to this 3D problem: the Incremental Generalized Sensitivity Function (IGSF), the classical D-optimal criterion and the SE-criterion recently introduced in [3]. The estimation of the parameters is then obtained by means of the Ordinary Least Square procedure on the resulting optimal observation points and compared to that for a uniform observation mesh. In order to analyze the performance of each strategy, the data are numerically simulated and the estimated values are compared with the values used for simulation. © Copyright SIAM. CONF info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_97815108_v_n_p83_Banks
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Estimation
Optimal systems
Optimization
Distributed parameter systems
Optimal locations
Optimal observation
Optimization problems
Optimization scheme
Ordinary least squares
Sensitivity functions
Source identification
Inverse problems
spellingShingle Estimation
Optimal systems
Optimization
Distributed parameter systems
Optimal locations
Optimal observation
Optimization problems
Optimization scheme
Ordinary least squares
Sensitivity functions
Source identification
Inverse problems
Banks, H.T.
Rubio, D.
Saintier, N.
Troparevsky, M.I.
Kang W.
Zhang Q.
Fahroo F.
Optimal design techniques for distributed parameter systems
topic_facet Estimation
Optimal systems
Optimization
Distributed parameter systems
Optimal locations
Optimal observation
Optimization problems
Optimization scheme
Ordinary least squares
Sensitivity functions
Source identification
Inverse problems
description A wide number of inverse problems consist in selecting best parameter values of a given mathematical model based fits to measured data. These are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given data. The problem of collecting data in the "best way" in order to assure a statistically efficient estimate of the parameter is known as Optimal Design. In this work we consider the problem of finding optimal locations for source identification in the 3D unit sphere from data on its boundary. We apply three different optimal design criteria to this 3D problem: the Incremental Generalized Sensitivity Function (IGSF), the classical D-optimal criterion and the SE-criterion recently introduced in [3]. The estimation of the parameters is then obtained by means of the Ordinary Least Square procedure on the resulting optimal observation points and compared to that for a uniform observation mesh. In order to analyze the performance of each strategy, the data are numerically simulated and the estimated values are compared with the values used for simulation. © Copyright SIAM.
format CONF
author Banks, H.T.
Rubio, D.
Saintier, N.
Troparevsky, M.I.
Kang W.
Zhang Q.
Fahroo F.
author_facet Banks, H.T.
Rubio, D.
Saintier, N.
Troparevsky, M.I.
Kang W.
Zhang Q.
Fahroo F.
author_sort Banks, H.T.
title Optimal design techniques for distributed parameter systems
title_short Optimal design techniques for distributed parameter systems
title_full Optimal design techniques for distributed parameter systems
title_fullStr Optimal design techniques for distributed parameter systems
title_full_unstemmed Optimal design techniques for distributed parameter systems
title_sort optimal design techniques for distributed parameter systems
url http://hdl.handle.net/20.500.12110/paper_97815108_v_n_p83_Banks
work_keys_str_mv AT banksht optimaldesigntechniquesfordistributedparametersystems
AT rubiod optimaldesigntechniquesfordistributedparametersystems
AT saintiern optimaldesigntechniquesfordistributedparametersystems
AT troparevskymi optimaldesigntechniquesfordistributedparametersystems
AT kangw optimaldesigntechniquesfordistributedparametersystems
AT zhangq optimaldesigntechniquesfordistributedparametersystems
AT fahroof optimaldesigntechniquesfordistributedparametersystems
_version_ 1807324144033857536