id todo:paper_97814244_v_n_p3241_GutmanGrinbank
record_format dspace
spelling todo:paper_97814244_v_n_p3241_GutmanGrinbank2023-10-03T16:43:09Z Simulations of transport regime in electrodeposition in different viscosity scenarios Gutman Grinbank, S. Soba, A. Gonzalez, G.A. Díaz Constanzo, G. Bogo, H.A. Marshall, G. Cell resistance Electrochemical deposition Electroconvection Experimental measurements Galvanostatic conditions Ion transports Low viscosity Numerical models Theoretical modeling Theoretical models Thin layers Time-scaling Viscosity increase Viscosity variations Electrochemical sensors Electrodeposition Reduction Viscosity biomaterial article chemical model chemistry computer simulation electromagnetic field electroplating industry ion transport methodology radiation exposure solution and solubility synthesis viscosity Biocompatible Materials Computer Simulation Electromagnetic Fields Electroplating Ion Transport Models, Chemical Solutions Viscosity In this work we study the effects of viscosity variations in thin-layer electrochemical deposition (ECD) under galvanostatic conditions through experimental measurements and theoretical modeling. The theoretical model, written in terms of dimensionless quantities, describes diffusive, migratory and convective ion transport in a fluid under galvanostatic conditions. Experiments reveal that as viscosity increases, convection decreases when the cell resistance remains constant. Our numerical model predicts that as viscosity increases, electroconvection becomes less relevant and concentration and convective fronts slow down. The time scaling of this phenomenon is studied and compared to previously reported low viscosity solution studies. © 2010 IEEE. Fil:Soba, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gonzalez, G.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Bogo, H.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. CONF info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_97814244_v_n_p3241_GutmanGrinbank
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Cell resistance
Electrochemical deposition
Electroconvection
Experimental measurements
Galvanostatic conditions
Ion transports
Low viscosity
Numerical models
Theoretical modeling
Theoretical models
Thin layers
Time-scaling
Viscosity increase
Viscosity variations
Electrochemical sensors
Electrodeposition
Reduction
Viscosity
biomaterial
article
chemical model
chemistry
computer simulation
electromagnetic field
electroplating industry
ion transport
methodology
radiation exposure
solution and solubility
synthesis
viscosity
Biocompatible Materials
Computer Simulation
Electromagnetic Fields
Electroplating
Ion Transport
Models, Chemical
Solutions
Viscosity
spellingShingle Cell resistance
Electrochemical deposition
Electroconvection
Experimental measurements
Galvanostatic conditions
Ion transports
Low viscosity
Numerical models
Theoretical modeling
Theoretical models
Thin layers
Time-scaling
Viscosity increase
Viscosity variations
Electrochemical sensors
Electrodeposition
Reduction
Viscosity
biomaterial
article
chemical model
chemistry
computer simulation
electromagnetic field
electroplating industry
ion transport
methodology
radiation exposure
solution and solubility
synthesis
viscosity
Biocompatible Materials
Computer Simulation
Electromagnetic Fields
Electroplating
Ion Transport
Models, Chemical
Solutions
Viscosity
Gutman Grinbank, S.
Soba, A.
Gonzalez, G.A.
Díaz Constanzo, G.
Bogo, H.A.
Marshall, G.
Simulations of transport regime in electrodeposition in different viscosity scenarios
topic_facet Cell resistance
Electrochemical deposition
Electroconvection
Experimental measurements
Galvanostatic conditions
Ion transports
Low viscosity
Numerical models
Theoretical modeling
Theoretical models
Thin layers
Time-scaling
Viscosity increase
Viscosity variations
Electrochemical sensors
Electrodeposition
Reduction
Viscosity
biomaterial
article
chemical model
chemistry
computer simulation
electromagnetic field
electroplating industry
ion transport
methodology
radiation exposure
solution and solubility
synthesis
viscosity
Biocompatible Materials
Computer Simulation
Electromagnetic Fields
Electroplating
Ion Transport
Models, Chemical
Solutions
Viscosity
description In this work we study the effects of viscosity variations in thin-layer electrochemical deposition (ECD) under galvanostatic conditions through experimental measurements and theoretical modeling. The theoretical model, written in terms of dimensionless quantities, describes diffusive, migratory and convective ion transport in a fluid under galvanostatic conditions. Experiments reveal that as viscosity increases, convection decreases when the cell resistance remains constant. Our numerical model predicts that as viscosity increases, electroconvection becomes less relevant and concentration and convective fronts slow down. The time scaling of this phenomenon is studied and compared to previously reported low viscosity solution studies. © 2010 IEEE.
format CONF
author Gutman Grinbank, S.
Soba, A.
Gonzalez, G.A.
Díaz Constanzo, G.
Bogo, H.A.
Marshall, G.
author_facet Gutman Grinbank, S.
Soba, A.
Gonzalez, G.A.
Díaz Constanzo, G.
Bogo, H.A.
Marshall, G.
author_sort Gutman Grinbank, S.
title Simulations of transport regime in electrodeposition in different viscosity scenarios
title_short Simulations of transport regime in electrodeposition in different viscosity scenarios
title_full Simulations of transport regime in electrodeposition in different viscosity scenarios
title_fullStr Simulations of transport regime in electrodeposition in different viscosity scenarios
title_full_unstemmed Simulations of transport regime in electrodeposition in different viscosity scenarios
title_sort simulations of transport regime in electrodeposition in different viscosity scenarios
url http://hdl.handle.net/20.500.12110/paper_97814244_v_n_p3241_GutmanGrinbank
work_keys_str_mv AT gutmangrinbanks simulationsoftransportregimeinelectrodepositionindifferentviscosityscenarios
AT sobaa simulationsoftransportregimeinelectrodepositionindifferentviscosityscenarios
AT gonzalezga simulationsoftransportregimeinelectrodepositionindifferentviscosityscenarios
AT diazconstanzog simulationsoftransportregimeinelectrodepositionindifferentviscosityscenarios
AT bogoha simulationsoftransportregimeinelectrodepositionindifferentviscosityscenarios
AT marshallg simulationsoftransportregimeinelectrodepositionindifferentviscosityscenarios
_version_ 1807318282354556928