Minimizing annotation effort for adaptation of speech-activity detection systems
Annotating audio data for the presence and location of speech is a time-consuming and therefore costly task. This is mostly because annotation precision greatly affects the performance of the speech-activity detection (SAD) systems trained with this data, which means that the annotation process must...
Guardado en:
Autores principales: | Ferrer, L., Graciarena, M., Morgan N., Georgiou P., Narayanan S., Metze F., Amazon Alexa; Apple; eBay; et al.; Google; Microsoft |
---|---|
Formato: | CONF |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_2308457X_v08-12-September-2016_n_p3002_Ferrer |
Aporte de: |
Ejemplares similares
-
Minimizing annotation effort for adaptation of speech-activity detection systems
Publicado: (2016) -
The SRI system for the NIST OpenSAD 2015 speech activity detection evaluation
por: Graciarena, M., et al. -
The SRI system for the NIST OpenSAD 2015 speech activity detection evaluation
Publicado: (2016) -
Mitigating the effects of non-stationary unseen noises on language recognition performance
por: Ferrer, L., et al. -
Mitigating the effects of non-stationary unseen noises on language recognition performance
Publicado: (2015)