Transfer of optical orbital angular momentum to a bound electron

Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Schmiegelow, C.T., Schulz, J., Kaufmann, H., Ruster, T., Poschinger, U.G., Schmidt-Kaler, F.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_20411723_v7_n_p_Schmiegelow
Aporte de:
id todo:paper_20411723_v7_n_p_Schmiegelow
record_format dspace
spelling todo:paper_20411723_v7_n_p_Schmiegelow2023-10-03T16:37:52Z Transfer of optical orbital angular momentum to a bound electron Schmiegelow, C.T. Schulz, J. Kaufmann, H. Ruster, T. Poschinger, U.G. Schmidt-Kaler, F. angular momentum electron light optical property quantum mechanics vortex Article atom electron frequency laser light magnetic field motion oscillation photon Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems. © The Author(s) 2016. Fil:Schmiegelow, C.T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_20411723_v7_n_p_Schmiegelow
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic angular momentum
electron
light
optical property
quantum mechanics
vortex
Article
atom
electron
frequency
laser
light
magnetic field
motion
oscillation
photon
spellingShingle angular momentum
electron
light
optical property
quantum mechanics
vortex
Article
atom
electron
frequency
laser
light
magnetic field
motion
oscillation
photon
Schmiegelow, C.T.
Schulz, J.
Kaufmann, H.
Ruster, T.
Poschinger, U.G.
Schmidt-Kaler, F.
Transfer of optical orbital angular momentum to a bound electron
topic_facet angular momentum
electron
light
optical property
quantum mechanics
vortex
Article
atom
electron
frequency
laser
light
magnetic field
motion
oscillation
photon
description Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems. © The Author(s) 2016.
format JOUR
author Schmiegelow, C.T.
Schulz, J.
Kaufmann, H.
Ruster, T.
Poschinger, U.G.
Schmidt-Kaler, F.
author_facet Schmiegelow, C.T.
Schulz, J.
Kaufmann, H.
Ruster, T.
Poschinger, U.G.
Schmidt-Kaler, F.
author_sort Schmiegelow, C.T.
title Transfer of optical orbital angular momentum to a bound electron
title_short Transfer of optical orbital angular momentum to a bound electron
title_full Transfer of optical orbital angular momentum to a bound electron
title_fullStr Transfer of optical orbital angular momentum to a bound electron
title_full_unstemmed Transfer of optical orbital angular momentum to a bound electron
title_sort transfer of optical orbital angular momentum to a bound electron
url http://hdl.handle.net/20.500.12110/paper_20411723_v7_n_p_Schmiegelow
work_keys_str_mv AT schmiegelowct transferofopticalorbitalangularmomentumtoaboundelectron
AT schulzj transferofopticalorbitalangularmomentumtoaboundelectron
AT kaufmannh transferofopticalorbitalangularmomentumtoaboundelectron
AT rustert transferofopticalorbitalangularmomentumtoaboundelectron
AT poschingerug transferofopticalorbitalangularmomentumtoaboundelectron
AT schmidtkalerf transferofopticalorbitalangularmomentumtoaboundelectron
_version_ 1807321883596554240