Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication

Biofilms cause biofouling, pipe plugging, prostheses colonization, disease, and nosocomial infections. Bacterial biofilms are more resilient to sterilization methods than planktonic bacteria; therefore, better control methods are required. The use of gas discharge plasmas is an appropriate alternati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Soler-Arango, J., Xaubet, M., Giuliani, L., Grondona, D., Brelles-Mariño, G.
Formato: JOUR
Materias:
air
pH
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_19475764_v7_n1_p43_SolerArango
Aporte de:
id todo:paper_19475764_v7_n1_p43_SolerArango
record_format dspace
spelling todo:paper_19475764_v7_n1_p43_SolerArango2023-10-03T16:37:08Z Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication Soler-Arango, J. Xaubet, M. Giuliani, L. Grondona, D. Brelles-Mariño, G. Air-based plasma Biofilm eradication Biofilms Non-thermal plasmas Pseudomonas aeruginosa Pseudomonas biofilms Sterilization Airports Bacteria Biofilms Dielectric devices Dielectric materials Flow control Military bases Plasma applications Plasma sources Plasma theory Sterilization (cleaning) Surface treatment Continuous culture Decimal reduction Dielectric barrier discharge plasmas Gas-discharge plasmas Nonthermal plasma Nosocomial infection Planktonic bacteria Pseudomonas aeruginosa Electric discharges carbon cell DNA deoxyribonuclease glass polycarbonate stainless steel air airflow ambient air Article bacterial viability biofilm carbon source cell density cell survival chemical composition colony forming unit continuous culture controlled study culture medium electric potential electrode epifluorescence microscopy hydrophilicity hydrophobicity nonhuman pH physical chemistry priority journal Pseudomonas aeruginosa reduction (chemistry) static electricity surface property surface tension survival rate temperature sensitivity waveform Biofilms cause biofouling, pipe plugging, prostheses colonization, disease, and nosocomial infections. Bacterial biofilms are more resilient to sterilization methods than planktonic bacteria; therefore, better control methods are required. The use of gas discharge plasmas is an appropriate alternative because plasmas contain a mixture of reactive agents that are well known for bacterial decontamination. This study assesses culture medium-abiotic surface combinations leading to robust biofilms and tests an air-based coaxial dielectric barrier discharge (DBD) plasma source on Pseudomonas aeruginosa biofilms grown in continuous culture under those selected conditions. Biofilms were eradicated after a 15-min plasma treatment, resulting in a CFU/mL decrease of 5.6 log10 units. CFU/mL decreases of 1.6 and 2.7 log10 units were achieved after a 3-min plasma exposure to ambient and moistened air plasma, respectively, although viability assays showed that some cells were alive. Moistened-air plasma resulted in a faster biofilm inactivation, with decimal reduction times of 1.14 and 4.36 min. The coaxial DBD air-based plasma source presented here is effective for Pseudomonas biofilm inactivation, affordable because it does not rely on expensive gases, and easy to handle for indirect surface treatment. To the best of our knowledge, the search for the best combination medium surface leading to robust biofilms before plasma treatment has not been previously assessed. © 2017 by Begell House, Inc. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_19475764_v7_n1_p43_SolerArango
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Air-based plasma
Biofilm eradication
Biofilms
Non-thermal plasmas
Pseudomonas aeruginosa
Pseudomonas biofilms
Sterilization
Airports
Bacteria
Biofilms
Dielectric devices
Dielectric materials
Flow control
Military bases
Plasma applications
Plasma sources
Plasma theory
Sterilization (cleaning)
Surface treatment
Continuous culture
Decimal reduction
Dielectric barrier discharge plasmas
Gas-discharge plasmas
Nonthermal plasma
Nosocomial infection
Planktonic bacteria
Pseudomonas aeruginosa
Electric discharges
carbon
cell DNA
deoxyribonuclease
glass
polycarbonate
stainless steel
air
airflow
ambient air
Article
bacterial viability
biofilm
carbon source
cell density
cell survival
chemical composition
colony forming unit
continuous culture
controlled study
culture medium
electric potential
electrode
epifluorescence microscopy
hydrophilicity
hydrophobicity
nonhuman
pH
physical chemistry
priority journal
Pseudomonas aeruginosa
reduction (chemistry)
static electricity
surface property
surface tension
survival rate
temperature sensitivity
waveform
spellingShingle Air-based plasma
Biofilm eradication
Biofilms
Non-thermal plasmas
Pseudomonas aeruginosa
Pseudomonas biofilms
Sterilization
Airports
Bacteria
Biofilms
Dielectric devices
Dielectric materials
Flow control
Military bases
Plasma applications
Plasma sources
Plasma theory
Sterilization (cleaning)
Surface treatment
Continuous culture
Decimal reduction
Dielectric barrier discharge plasmas
Gas-discharge plasmas
Nonthermal plasma
Nosocomial infection
Planktonic bacteria
Pseudomonas aeruginosa
Electric discharges
carbon
cell DNA
deoxyribonuclease
glass
polycarbonate
stainless steel
air
airflow
ambient air
Article
bacterial viability
biofilm
carbon source
cell density
cell survival
chemical composition
colony forming unit
continuous culture
controlled study
culture medium
electric potential
electrode
epifluorescence microscopy
hydrophilicity
hydrophobicity
nonhuman
pH
physical chemistry
priority journal
Pseudomonas aeruginosa
reduction (chemistry)
static electricity
surface property
surface tension
survival rate
temperature sensitivity
waveform
Soler-Arango, J.
Xaubet, M.
Giuliani, L.
Grondona, D.
Brelles-Mariño, G.
Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication
topic_facet Air-based plasma
Biofilm eradication
Biofilms
Non-thermal plasmas
Pseudomonas aeruginosa
Pseudomonas biofilms
Sterilization
Airports
Bacteria
Biofilms
Dielectric devices
Dielectric materials
Flow control
Military bases
Plasma applications
Plasma sources
Plasma theory
Sterilization (cleaning)
Surface treatment
Continuous culture
Decimal reduction
Dielectric barrier discharge plasmas
Gas-discharge plasmas
Nonthermal plasma
Nosocomial infection
Planktonic bacteria
Pseudomonas aeruginosa
Electric discharges
carbon
cell DNA
deoxyribonuclease
glass
polycarbonate
stainless steel
air
airflow
ambient air
Article
bacterial viability
biofilm
carbon source
cell density
cell survival
chemical composition
colony forming unit
continuous culture
controlled study
culture medium
electric potential
electrode
epifluorescence microscopy
hydrophilicity
hydrophobicity
nonhuman
pH
physical chemistry
priority journal
Pseudomonas aeruginosa
reduction (chemistry)
static electricity
surface property
surface tension
survival rate
temperature sensitivity
waveform
description Biofilms cause biofouling, pipe plugging, prostheses colonization, disease, and nosocomial infections. Bacterial biofilms are more resilient to sterilization methods than planktonic bacteria; therefore, better control methods are required. The use of gas discharge plasmas is an appropriate alternative because plasmas contain a mixture of reactive agents that are well known for bacterial decontamination. This study assesses culture medium-abiotic surface combinations leading to robust biofilms and tests an air-based coaxial dielectric barrier discharge (DBD) plasma source on Pseudomonas aeruginosa biofilms grown in continuous culture under those selected conditions. Biofilms were eradicated after a 15-min plasma treatment, resulting in a CFU/mL decrease of 5.6 log10 units. CFU/mL decreases of 1.6 and 2.7 log10 units were achieved after a 3-min plasma exposure to ambient and moistened air plasma, respectively, although viability assays showed that some cells were alive. Moistened-air plasma resulted in a faster biofilm inactivation, with decimal reduction times of 1.14 and 4.36 min. The coaxial DBD air-based plasma source presented here is effective for Pseudomonas biofilm inactivation, affordable because it does not rely on expensive gases, and easy to handle for indirect surface treatment. To the best of our knowledge, the search for the best combination medium surface leading to robust biofilms before plasma treatment has not been previously assessed. © 2017 by Begell House, Inc.
format JOUR
author Soler-Arango, J.
Xaubet, M.
Giuliani, L.
Grondona, D.
Brelles-Mariño, G.
author_facet Soler-Arango, J.
Xaubet, M.
Giuliani, L.
Grondona, D.
Brelles-Mariño, G.
author_sort Soler-Arango, J.
title Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication
title_short Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication
title_full Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication
title_fullStr Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication
title_full_unstemmed Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication
title_sort air-based coaxial dielectric barrier discharge plasma source for pseudomonas aeruginosa biofilm eradication
url http://hdl.handle.net/20.500.12110/paper_19475764_v7_n1_p43_SolerArango
work_keys_str_mv AT solerarangoj airbasedcoaxialdielectricbarrierdischargeplasmasourceforpseudomonasaeruginosabiofilmeradication
AT xaubetm airbasedcoaxialdielectricbarrierdischargeplasmasourceforpseudomonasaeruginosabiofilmeradication
AT giulianil airbasedcoaxialdielectricbarrierdischargeplasmasourceforpseudomonasaeruginosabiofilmeradication
AT grondonad airbasedcoaxialdielectricbarrierdischargeplasmasourceforpseudomonasaeruginosabiofilmeradication
AT brellesmarinog airbasedcoaxialdielectricbarrierdischargeplasmasourceforpseudomonasaeruginosabiofilmeradication
_version_ 1807317227718836224