Protein Stability and Dynamics Modulation: The Case of Human Frataxin
Frataxin (FXN) is an α/β protein that plays an essential role in iron homeostasis. Apparently, the function of human FXN (hFXN) depends on the cooperative formation of crucial interactions between helix α1, helix α2, and the C-terminal region (CTR) of the protein. In this work we quantitatively expl...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_19326203_v7_n9_p_Roman |
Aporte de: |
id |
todo:paper_19326203_v7_n9_p_Roman |
---|---|
record_format |
dspace |
spelling |
todo:paper_19326203_v7_n9_p_Roman2023-10-03T16:35:27Z Protein Stability and Dynamics Modulation: The Case of Human Frataxin Roman, E.A. Faraj, S.E. Gallo, M. Salvay, A.G. Ferreiro, D.U. Santos, J. frataxin alpha helix article carboxy terminal sequence circular dichroism fluorescence analysis hydrodynamics nuclear magnetic resonance spectroscopy protein folding protein function protein secondary structure protein stability protein tertiary structure protein unfolding quantitative analysis structure analysis Circular Dichroism Homeostasis Humans Hydrodynamics Iron Iron-Binding Proteins Magnetic Resonance Spectroscopy Microscopy, Fluorescence Models, Molecular Molecular Conformation Molecular Dynamics Simulation Point Mutation Protein Denaturation Protein Folding Protein Structure, Tertiary Recombinant Proteins Solvents Temperature Time Factors Frataxin (FXN) is an α/β protein that plays an essential role in iron homeostasis. Apparently, the function of human FXN (hFXN) depends on the cooperative formation of crucial interactions between helix α1, helix α2, and the C-terminal region (CTR) of the protein. In this work we quantitatively explore these relationships using a purified recombinant fragment hFXN90-195. This variant shows the hydrodynamic behavior expected for a monomeric globular domain. Circular dichroism, fluorescence, and NMR spectroscopies show that hFXN90-195 presents native-like secondary and tertiary structure. However, chemical and temperature induced denaturation show that CTR truncation significantly destabilizes the overall hFXN fold. Accordingly, limited proteolysis experiments suggest that the native-state dynamics of hFXN90-195 and hFXN90-210 are indeed different, being the former form much more sensitive to the protease at specific sites. The overall folding dynamics of hFXN fold was further explored with structure-based protein folding simulations. These suggest that the native ensemble of hFXN can be decomposed in at least two substates, one with consolidation of the CTR and the other without consolidation of the CTR. Explicit-solvent all atom simulations identify some of the proteolytic target sites as flexible regions of the protein. We propose that the local unfolding of CTR may be a critical step for the global unfolding of hFXN, and that modulation of the CTR interactions may strongly affect hFXN physiological function. © 2012 Roman et al. Fil:Roman, E.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gallo, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Ferreiro, D.U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_19326203_v7_n9_p_Roman |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
frataxin alpha helix article carboxy terminal sequence circular dichroism fluorescence analysis hydrodynamics nuclear magnetic resonance spectroscopy protein folding protein function protein secondary structure protein stability protein tertiary structure protein unfolding quantitative analysis structure analysis Circular Dichroism Homeostasis Humans Hydrodynamics Iron Iron-Binding Proteins Magnetic Resonance Spectroscopy Microscopy, Fluorescence Models, Molecular Molecular Conformation Molecular Dynamics Simulation Point Mutation Protein Denaturation Protein Folding Protein Structure, Tertiary Recombinant Proteins Solvents Temperature Time Factors |
spellingShingle |
frataxin alpha helix article carboxy terminal sequence circular dichroism fluorescence analysis hydrodynamics nuclear magnetic resonance spectroscopy protein folding protein function protein secondary structure protein stability protein tertiary structure protein unfolding quantitative analysis structure analysis Circular Dichroism Homeostasis Humans Hydrodynamics Iron Iron-Binding Proteins Magnetic Resonance Spectroscopy Microscopy, Fluorescence Models, Molecular Molecular Conformation Molecular Dynamics Simulation Point Mutation Protein Denaturation Protein Folding Protein Structure, Tertiary Recombinant Proteins Solvents Temperature Time Factors Roman, E.A. Faraj, S.E. Gallo, M. Salvay, A.G. Ferreiro, D.U. Santos, J. Protein Stability and Dynamics Modulation: The Case of Human Frataxin |
topic_facet |
frataxin alpha helix article carboxy terminal sequence circular dichroism fluorescence analysis hydrodynamics nuclear magnetic resonance spectroscopy protein folding protein function protein secondary structure protein stability protein tertiary structure protein unfolding quantitative analysis structure analysis Circular Dichroism Homeostasis Humans Hydrodynamics Iron Iron-Binding Proteins Magnetic Resonance Spectroscopy Microscopy, Fluorescence Models, Molecular Molecular Conformation Molecular Dynamics Simulation Point Mutation Protein Denaturation Protein Folding Protein Structure, Tertiary Recombinant Proteins Solvents Temperature Time Factors |
description |
Frataxin (FXN) is an α/β protein that plays an essential role in iron homeostasis. Apparently, the function of human FXN (hFXN) depends on the cooperative formation of crucial interactions between helix α1, helix α2, and the C-terminal region (CTR) of the protein. In this work we quantitatively explore these relationships using a purified recombinant fragment hFXN90-195. This variant shows the hydrodynamic behavior expected for a monomeric globular domain. Circular dichroism, fluorescence, and NMR spectroscopies show that hFXN90-195 presents native-like secondary and tertiary structure. However, chemical and temperature induced denaturation show that CTR truncation significantly destabilizes the overall hFXN fold. Accordingly, limited proteolysis experiments suggest that the native-state dynamics of hFXN90-195 and hFXN90-210 are indeed different, being the former form much more sensitive to the protease at specific sites. The overall folding dynamics of hFXN fold was further explored with structure-based protein folding simulations. These suggest that the native ensemble of hFXN can be decomposed in at least two substates, one with consolidation of the CTR and the other without consolidation of the CTR. Explicit-solvent all atom simulations identify some of the proteolytic target sites as flexible regions of the protein. We propose that the local unfolding of CTR may be a critical step for the global unfolding of hFXN, and that modulation of the CTR interactions may strongly affect hFXN physiological function. © 2012 Roman et al. |
format |
JOUR |
author |
Roman, E.A. Faraj, S.E. Gallo, M. Salvay, A.G. Ferreiro, D.U. Santos, J. |
author_facet |
Roman, E.A. Faraj, S.E. Gallo, M. Salvay, A.G. Ferreiro, D.U. Santos, J. |
author_sort |
Roman, E.A. |
title |
Protein Stability and Dynamics Modulation: The Case of Human Frataxin |
title_short |
Protein Stability and Dynamics Modulation: The Case of Human Frataxin |
title_full |
Protein Stability and Dynamics Modulation: The Case of Human Frataxin |
title_fullStr |
Protein Stability and Dynamics Modulation: The Case of Human Frataxin |
title_full_unstemmed |
Protein Stability and Dynamics Modulation: The Case of Human Frataxin |
title_sort |
protein stability and dynamics modulation: the case of human frataxin |
url |
http://hdl.handle.net/20.500.12110/paper_19326203_v7_n9_p_Roman |
work_keys_str_mv |
AT romanea proteinstabilityanddynamicsmodulationthecaseofhumanfrataxin AT farajse proteinstabilityanddynamicsmodulationthecaseofhumanfrataxin AT gallom proteinstabilityanddynamicsmodulationthecaseofhumanfrataxin AT salvayag proteinstabilityanddynamicsmodulationthecaseofhumanfrataxin AT ferreirodu proteinstabilityanddynamicsmodulationthecaseofhumanfrataxin AT santosj proteinstabilityanddynamicsmodulationthecaseofhumanfrataxin |
_version_ |
1807317795940073472 |