Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots

We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnet...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alcalde, A.M., Romano, C.L., Sanz, L., Marques, G.E.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_17426588_v92_n1_p_Alcalde
Aporte de:
id todo:paper_17426588_v92_n1_p_Alcalde
record_format dspace
spelling todo:paper_17426588_v92_n1_p_Alcalde2023-10-03T16:31:17Z Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots Alcalde, A.M. Romano, C.L. Sanz, L. Marques, G.E. We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnetic field and lateral dot size, we determine regions where the spin relaxation rates can be practically suppressed. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed. © 2007 IOP Publishing Ltd. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_17426588_v92_n1_p_Alcalde
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnetic field and lateral dot size, we determine regions where the spin relaxation rates can be practically suppressed. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed. © 2007 IOP Publishing Ltd.
format JOUR
author Alcalde, A.M.
Romano, C.L.
Sanz, L.
Marques, G.E.
spellingShingle Alcalde, A.M.
Romano, C.L.
Sanz, L.
Marques, G.E.
Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots
author_facet Alcalde, A.M.
Romano, C.L.
Sanz, L.
Marques, G.E.
author_sort Alcalde, A.M.
title Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots
title_short Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots
title_full Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots
title_fullStr Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots
title_full_unstemmed Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots
title_sort phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in insb quantum dots
url http://hdl.handle.net/20.500.12110/paper_17426588_v92_n1_p_Alcalde
work_keys_str_mv AT alcaldeam phononmodulationofthespinorbitinteractionasaspinrelaxationmechanismininsbquantumdots
AT romanocl phononmodulationofthespinorbitinteractionasaspinrelaxationmechanismininsbquantumdots
AT sanzl phononmodulationofthespinorbitinteractionasaspinrelaxationmechanismininsbquantumdots
AT marquesge phononmodulationofthespinorbitinteractionasaspinrelaxationmechanismininsbquantumdots
_version_ 1807322542308851712