Deformation techniques for sparse systems
We exhibit a probabilistic symbolic algorithm for solving zero-dimensional sparse systems. Our algorithm combines a symbolic homotopy procedure, based on a flat deformation of a certain morphism of affine varieties, with the polyhedral deformation of Huber and Sturmfels. The complexity of our algori...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_16153375_v9_n1_p1_Jeronimo |
Aporte de: |
id |
todo:paper_16153375_v9_n1_p1_Jeronimo |
---|---|
record_format |
dspace |
spelling |
todo:paper_16153375_v9_n1_p1_Jeronimo2023-10-03T16:28:17Z Deformation techniques for sparse systems Jeronimo, G. Matera, G. Solernó, P. Waissbein, A. Complexity Geometric solutions Mixed volume Newton-Hensel lifting Non-Archimedean height Polyhedral deformations Probabilistic algorithms Puiseux expansions of space curves Sparse system solving Symbolic homotopy algorithms Complexity Homotopy algorithms Mixed volume Newton-Hensel lifting Non-Archimedean height Probabilistic algorithm Space curve Sparse systems Algorithms Deformation We exhibit a probabilistic symbolic algorithm for solving zero-dimensional sparse systems. Our algorithm combines a symbolic homotopy procedure, based on a flat deformation of a certain morphism of affine varieties, with the polyhedral deformation of Huber and Sturmfels. The complexity of our algorithm is cubic in the size of the combinatorial structure of the input system. This size is mainly represented by the cardinality and mixed volume of Newton polytopes of the input polynomials and an arithmetic analogue of the mixed volume associated to the deformations under consideration. © 2008 SFoCM. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Matera, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_16153375_v9_n1_p1_Jeronimo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Complexity Geometric solutions Mixed volume Newton-Hensel lifting Non-Archimedean height Polyhedral deformations Probabilistic algorithms Puiseux expansions of space curves Sparse system solving Symbolic homotopy algorithms Complexity Homotopy algorithms Mixed volume Newton-Hensel lifting Non-Archimedean height Probabilistic algorithm Space curve Sparse systems Algorithms Deformation |
spellingShingle |
Complexity Geometric solutions Mixed volume Newton-Hensel lifting Non-Archimedean height Polyhedral deformations Probabilistic algorithms Puiseux expansions of space curves Sparse system solving Symbolic homotopy algorithms Complexity Homotopy algorithms Mixed volume Newton-Hensel lifting Non-Archimedean height Probabilistic algorithm Space curve Sparse systems Algorithms Deformation Jeronimo, G. Matera, G. Solernó, P. Waissbein, A. Deformation techniques for sparse systems |
topic_facet |
Complexity Geometric solutions Mixed volume Newton-Hensel lifting Non-Archimedean height Polyhedral deformations Probabilistic algorithms Puiseux expansions of space curves Sparse system solving Symbolic homotopy algorithms Complexity Homotopy algorithms Mixed volume Newton-Hensel lifting Non-Archimedean height Probabilistic algorithm Space curve Sparse systems Algorithms Deformation |
description |
We exhibit a probabilistic symbolic algorithm for solving zero-dimensional sparse systems. Our algorithm combines a symbolic homotopy procedure, based on a flat deformation of a certain morphism of affine varieties, with the polyhedral deformation of Huber and Sturmfels. The complexity of our algorithm is cubic in the size of the combinatorial structure of the input system. This size is mainly represented by the cardinality and mixed volume of Newton polytopes of the input polynomials and an arithmetic analogue of the mixed volume associated to the deformations under consideration. © 2008 SFoCM. |
format |
JOUR |
author |
Jeronimo, G. Matera, G. Solernó, P. Waissbein, A. |
author_facet |
Jeronimo, G. Matera, G. Solernó, P. Waissbein, A. |
author_sort |
Jeronimo, G. |
title |
Deformation techniques for sparse systems |
title_short |
Deformation techniques for sparse systems |
title_full |
Deformation techniques for sparse systems |
title_fullStr |
Deformation techniques for sparse systems |
title_full_unstemmed |
Deformation techniques for sparse systems |
title_sort |
deformation techniques for sparse systems |
url |
http://hdl.handle.net/20.500.12110/paper_16153375_v9_n1_p1_Jeronimo |
work_keys_str_mv |
AT jeronimog deformationtechniquesforsparsesystems AT materag deformationtechniquesforsparsesystems AT solernop deformationtechniquesforsparsesystems AT waissbeina deformationtechniquesforsparsesystems |
_version_ |
1807322719234031616 |