The Computational Complexity of the Chow Form

We present a bounded probability algorithm for the computation of the Chow forms of the equidimensional components of an algebraic variety. In particular, this gives an alternative procedure for the effective equidimensional decomposition of the variety, since each equidimensional component is chara...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeronimo, G., Krick, T., Sabia, J., Sombra, M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_16153375_v4_n1_p41_Jeronimo
Aporte de:
id todo:paper_16153375_v4_n1_p41_Jeronimo
record_format dspace
spelling todo:paper_16153375_v4_n1_p41_Jeronimo2023-10-03T16:28:16Z The Computational Complexity of the Chow Form Jeronimo, G. Krick, T. Sabia, J. Sombra, M. Chow form Equidimensional decomposition of algebraic varieties Overdetermined polynomial equation system Sparse resultant Symbolic Newton algorithm Algorithms Computational methods Partial differential equations Polynomials Probability Set theory Bounded probability algorithm Chow form Computational complexity We present a bounded probability algorithm for the computation of the Chow forms of the equidimensional components of an algebraic variety. In particular, this gives an alternative procedure for the effective equidimensional decomposition of the variety, since each equidimensional component is characterized by its Chow form. The expected complexity of the algorithm is polynomial in the size and the geometric degree of the input equation system defining the variety. Hence it improves (or meets in some special cases) the complexity of all previous algorithms for computing Chow forms. In addition to this, we clarify the probability and uniformity aspects, which constitutes a further contribution of the paper. The algorithm is based on elimination theory techniques, in line with the geometric resolution algorithm due to M. Giusti, J. Heintz, L. M. Pardo, and their collaborators. In fact, ours can be considered as an extension of their algorithm for zero-dimensional systems to the case of positive-dimensional varieties. The key element for dealing with positive-dimensional varieties is a new Poisson-type product formula. This formula allows us to compute the Chow form of an equidimensional variety from a suitable zero-dimensional fiber. As an application, we obtain an algorithm to compute a subclass of sparse resultants, whose complexity is polynomial in the dimension and the volume of the input set of exponents. As another application, we derive an algorithm for the computation of the (unique) solution of a generic overdetermined polynomial equation system. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sombra, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_16153375_v4_n1_p41_Jeronimo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Chow form
Equidimensional decomposition of algebraic varieties
Overdetermined polynomial equation system
Sparse resultant
Symbolic Newton algorithm
Algorithms
Computational methods
Partial differential equations
Polynomials
Probability
Set theory
Bounded probability algorithm
Chow form
Computational complexity
spellingShingle Chow form
Equidimensional decomposition of algebraic varieties
Overdetermined polynomial equation system
Sparse resultant
Symbolic Newton algorithm
Algorithms
Computational methods
Partial differential equations
Polynomials
Probability
Set theory
Bounded probability algorithm
Chow form
Computational complexity
Jeronimo, G.
Krick, T.
Sabia, J.
Sombra, M.
The Computational Complexity of the Chow Form
topic_facet Chow form
Equidimensional decomposition of algebraic varieties
Overdetermined polynomial equation system
Sparse resultant
Symbolic Newton algorithm
Algorithms
Computational methods
Partial differential equations
Polynomials
Probability
Set theory
Bounded probability algorithm
Chow form
Computational complexity
description We present a bounded probability algorithm for the computation of the Chow forms of the equidimensional components of an algebraic variety. In particular, this gives an alternative procedure for the effective equidimensional decomposition of the variety, since each equidimensional component is characterized by its Chow form. The expected complexity of the algorithm is polynomial in the size and the geometric degree of the input equation system defining the variety. Hence it improves (or meets in some special cases) the complexity of all previous algorithms for computing Chow forms. In addition to this, we clarify the probability and uniformity aspects, which constitutes a further contribution of the paper. The algorithm is based on elimination theory techniques, in line with the geometric resolution algorithm due to M. Giusti, J. Heintz, L. M. Pardo, and their collaborators. In fact, ours can be considered as an extension of their algorithm for zero-dimensional systems to the case of positive-dimensional varieties. The key element for dealing with positive-dimensional varieties is a new Poisson-type product formula. This formula allows us to compute the Chow form of an equidimensional variety from a suitable zero-dimensional fiber. As an application, we obtain an algorithm to compute a subclass of sparse resultants, whose complexity is polynomial in the dimension and the volume of the input set of exponents. As another application, we derive an algorithm for the computation of the (unique) solution of a generic overdetermined polynomial equation system.
format JOUR
author Jeronimo, G.
Krick, T.
Sabia, J.
Sombra, M.
author_facet Jeronimo, G.
Krick, T.
Sabia, J.
Sombra, M.
author_sort Jeronimo, G.
title The Computational Complexity of the Chow Form
title_short The Computational Complexity of the Chow Form
title_full The Computational Complexity of the Chow Form
title_fullStr The Computational Complexity of the Chow Form
title_full_unstemmed The Computational Complexity of the Chow Form
title_sort computational complexity of the chow form
url http://hdl.handle.net/20.500.12110/paper_16153375_v4_n1_p41_Jeronimo
work_keys_str_mv AT jeronimog thecomputationalcomplexityofthechowform
AT krickt thecomputationalcomplexityofthechowform
AT sabiaj thecomputationalcomplexityofthechowform
AT sombram thecomputationalcomplexityofthechowform
AT jeronimog computationalcomplexityofthechowform
AT krickt computationalcomplexityofthechowform
AT sabiaj computationalcomplexityofthechowform
AT sombram computationalcomplexityofthechowform
_version_ 1807318069019672576