Short Models for Unit Interval Graphs
We present one more proof of the fact that the class of proper interval graphs is precisely the class of unit interval graphs. The proof leads to a new and efficient O (n) time and space algorithm that transforms a proper interval model of the graph into a unit model, where all the extremes are inte...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15710653_v35_nC_p247_Lin |
Aporte de: |
id |
todo:paper_15710653_v35_nC_p247_Lin |
---|---|
record_format |
dspace |
spelling |
todo:paper_15710653_v35_nC_p247_Lin2023-10-03T16:27:04Z Short Models for Unit Interval Graphs Lin, M.C. Soulignac, F.J. Szwarcfiter, J.L. algorithms and data structures efficient representation graph theory proper interval graphs unit interval graphs We present one more proof of the fact that the class of proper interval graphs is precisely the class of unit interval graphs. The proof leads to a new and efficient O (n) time and space algorithm that transforms a proper interval model of the graph into a unit model, where all the extremes are integers in the range 0 to O (n2), solving a problem posed by Gardi (Discrete Math., 307 (22), 2906-2908, 2007). © 2009 Elsevier B.V. All rights reserved. Fil:Lin, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Soulignac, F.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15710653_v35_nC_p247_Lin |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
algorithms and data structures efficient representation graph theory proper interval graphs unit interval graphs |
spellingShingle |
algorithms and data structures efficient representation graph theory proper interval graphs unit interval graphs Lin, M.C. Soulignac, F.J. Szwarcfiter, J.L. Short Models for Unit Interval Graphs |
topic_facet |
algorithms and data structures efficient representation graph theory proper interval graphs unit interval graphs |
description |
We present one more proof of the fact that the class of proper interval graphs is precisely the class of unit interval graphs. The proof leads to a new and efficient O (n) time and space algorithm that transforms a proper interval model of the graph into a unit model, where all the extremes are integers in the range 0 to O (n2), solving a problem posed by Gardi (Discrete Math., 307 (22), 2906-2908, 2007). © 2009 Elsevier B.V. All rights reserved. |
format |
JOUR |
author |
Lin, M.C. Soulignac, F.J. Szwarcfiter, J.L. |
author_facet |
Lin, M.C. Soulignac, F.J. Szwarcfiter, J.L. |
author_sort |
Lin, M.C. |
title |
Short Models for Unit Interval Graphs |
title_short |
Short Models for Unit Interval Graphs |
title_full |
Short Models for Unit Interval Graphs |
title_fullStr |
Short Models for Unit Interval Graphs |
title_full_unstemmed |
Short Models for Unit Interval Graphs |
title_sort |
short models for unit interval graphs |
url |
http://hdl.handle.net/20.500.12110/paper_15710653_v35_nC_p247_Lin |
work_keys_str_mv |
AT linmc shortmodelsforunitintervalgraphs AT soulignacfj shortmodelsforunitintervalgraphs AT szwarcfiterjl shortmodelsforunitintervalgraphs |
_version_ |
1807323254763814912 |