Clique-independent sets of Helly circular-arc graphs
A circular-arc graph is the intersection graph of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. A clique-independent set of a graph is a set of pairwise disjoint cliques of the graph. It is NP-hard to compute the maximum...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15710653_v18_n_p103_Duran |
Aporte de: |
id |
todo:paper_15710653_v18_n_p103_Duran |
---|---|
record_format |
dspace |
spelling |
todo:paper_15710653_v18_n_p103_Duran2023-10-03T16:26:59Z Clique-independent sets of Helly circular-arc graphs Durán, G. Lin, M.C. Mera, S. Szwarcfiter, J.L. algorithms circular-arc graphs clique-independent sets Helly circular-arc graphs A circular-arc graph is the intersection graph of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. A clique-independent set of a graph is a set of pairwise disjoint cliques of the graph. It is NP-hard to compute the maximum cardinality of a clique-independent set for a general graph. In the present paper, we propose algorithms for finding the maximum cardinality and weight of a clique-independent set of a over(3 K2, -)-free CA graph. Also, we apply the algorithms to the special case of an H C A graph. The complexity of the proposed algorithm for the cardinality problem in H C A graphs is O(n). This represents an improvement over the existing algorithm, whose complexity is O (n2). © 2005 Elsevier B.V. All rights reserved. Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lin, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mera, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15710653_v18_n_p103_Duran |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
algorithms circular-arc graphs clique-independent sets Helly circular-arc graphs |
spellingShingle |
algorithms circular-arc graphs clique-independent sets Helly circular-arc graphs Durán, G. Lin, M.C. Mera, S. Szwarcfiter, J.L. Clique-independent sets of Helly circular-arc graphs |
topic_facet |
algorithms circular-arc graphs clique-independent sets Helly circular-arc graphs |
description |
A circular-arc graph is the intersection graph of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. A clique-independent set of a graph is a set of pairwise disjoint cliques of the graph. It is NP-hard to compute the maximum cardinality of a clique-independent set for a general graph. In the present paper, we propose algorithms for finding the maximum cardinality and weight of a clique-independent set of a over(3 K2, -)-free CA graph. Also, we apply the algorithms to the special case of an H C A graph. The complexity of the proposed algorithm for the cardinality problem in H C A graphs is O(n). This represents an improvement over the existing algorithm, whose complexity is O (n2). © 2005 Elsevier B.V. All rights reserved. |
format |
JOUR |
author |
Durán, G. Lin, M.C. Mera, S. Szwarcfiter, J.L. |
author_facet |
Durán, G. Lin, M.C. Mera, S. Szwarcfiter, J.L. |
author_sort |
Durán, G. |
title |
Clique-independent sets of Helly circular-arc graphs |
title_short |
Clique-independent sets of Helly circular-arc graphs |
title_full |
Clique-independent sets of Helly circular-arc graphs |
title_fullStr |
Clique-independent sets of Helly circular-arc graphs |
title_full_unstemmed |
Clique-independent sets of Helly circular-arc graphs |
title_sort |
clique-independent sets of helly circular-arc graphs |
url |
http://hdl.handle.net/20.500.12110/paper_15710653_v18_n_p103_Duran |
work_keys_str_mv |
AT durang cliqueindependentsetsofhellycirculararcgraphs AT linmc cliqueindependentsetsofhellycirculararcgraphs AT meras cliqueindependentsetsofhellycirculararcgraphs AT szwarcfiterjl cliqueindependentsetsofhellycirculararcgraphs |
_version_ |
1807322421124923392 |