Fresnel reflection coefficients for GPR-AVA analysis and detection of seawater and NAPL contaminants

We obtain the transverse electric (TE) and transverse magnetic (TM) Fresnel reflection coefficients for different interfaces in the subsoil: air/fresh-water, air/seawater, fresh-water/seawater, air/NAPL (non-aqueous phase liquid), NAPL/water and water/NAPL. We consider a range of NAPL saturations, w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carcione, J.M., Gei, D., Botelho, M.A.B., Osella, A., de la Vega, M.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15694445_v4_n4_p253_Carcione
Aporte de:
id todo:paper_15694445_v4_n4_p253_Carcione
record_format dspace
spelling todo:paper_15694445_v4_n4_p253_Carcione2023-10-03T16:26:46Z Fresnel reflection coefficients for GPR-AVA analysis and detection of seawater and NAPL contaminants Carcione, J.M. Gei, D. Botelho, M.A.B. Osella, A. de la Vega, M. We obtain the transverse electric (TE) and transverse magnetic (TM) Fresnel reflection coefficients for different interfaces in the subsoil: air/fresh-water, air/seawater, fresh-water/seawater, air/NAPL (non-aqueous phase liquid), NAPL/water and water/NAPL. We consider a range of NAPL saturations, where the complementary fluid is water with 0.65 ppt (parts per thousand) of NaCl. The common feature is that the TM mode (parallel polarization) has a negative anomaly and the TE mode (perpendicular polarization) has a positive anomaly. For the cases studied in this work, pseudo-Brewster angles appear beyond 40° for the air/NAPL and NAPL/water interfaces and at near offsets (below 40°) for the water/NAPL interface. Pseudo-critical angles are present for the water/NAPL interface. Besides the reflection strength, the phase angle can be used to discriminate between low- and high-conductivity NAPL, when the properties of the upper medium are known. A wavenumber-frequency domain method is used to compute the reflection coefficient and phase angle from synthetic radargrams. This method and the curves can be used to interpret the amplitude variations with angle (AVA) of reflection events in radargrams obtained with ground-penetrating radar (GPR). © 2006 European Association of Geoscientists & Engineers. Fil:Carcione, J.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Osella, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:de la Vega, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15694445_v4_n4_p253_Carcione
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We obtain the transverse electric (TE) and transverse magnetic (TM) Fresnel reflection coefficients for different interfaces in the subsoil: air/fresh-water, air/seawater, fresh-water/seawater, air/NAPL (non-aqueous phase liquid), NAPL/water and water/NAPL. We consider a range of NAPL saturations, where the complementary fluid is water with 0.65 ppt (parts per thousand) of NaCl. The common feature is that the TM mode (parallel polarization) has a negative anomaly and the TE mode (perpendicular polarization) has a positive anomaly. For the cases studied in this work, pseudo-Brewster angles appear beyond 40° for the air/NAPL and NAPL/water interfaces and at near offsets (below 40°) for the water/NAPL interface. Pseudo-critical angles are present for the water/NAPL interface. Besides the reflection strength, the phase angle can be used to discriminate between low- and high-conductivity NAPL, when the properties of the upper medium are known. A wavenumber-frequency domain method is used to compute the reflection coefficient and phase angle from synthetic radargrams. This method and the curves can be used to interpret the amplitude variations with angle (AVA) of reflection events in radargrams obtained with ground-penetrating radar (GPR). © 2006 European Association of Geoscientists & Engineers.
format JOUR
author Carcione, J.M.
Gei, D.
Botelho, M.A.B.
Osella, A.
de la Vega, M.
spellingShingle Carcione, J.M.
Gei, D.
Botelho, M.A.B.
Osella, A.
de la Vega, M.
Fresnel reflection coefficients for GPR-AVA analysis and detection of seawater and NAPL contaminants
author_facet Carcione, J.M.
Gei, D.
Botelho, M.A.B.
Osella, A.
de la Vega, M.
author_sort Carcione, J.M.
title Fresnel reflection coefficients for GPR-AVA analysis and detection of seawater and NAPL contaminants
title_short Fresnel reflection coefficients for GPR-AVA analysis and detection of seawater and NAPL contaminants
title_full Fresnel reflection coefficients for GPR-AVA analysis and detection of seawater and NAPL contaminants
title_fullStr Fresnel reflection coefficients for GPR-AVA analysis and detection of seawater and NAPL contaminants
title_full_unstemmed Fresnel reflection coefficients for GPR-AVA analysis and detection of seawater and NAPL contaminants
title_sort fresnel reflection coefficients for gpr-ava analysis and detection of seawater and napl contaminants
url http://hdl.handle.net/20.500.12110/paper_15694445_v4_n4_p253_Carcione
work_keys_str_mv AT carcionejm fresnelreflectioncoefficientsforgpravaanalysisanddetectionofseawaterandnaplcontaminants
AT geid fresnelreflectioncoefficientsforgpravaanalysisanddetectionofseawaterandnaplcontaminants
AT botelhomab fresnelreflectioncoefficientsforgpravaanalysisanddetectionofseawaterandnaplcontaminants
AT osellaa fresnelreflectioncoefficientsforgpravaanalysisanddetectionofseawaterandnaplcontaminants
AT delavegam fresnelreflectioncoefficientsforgpravaanalysisanddetectionofseawaterandnaplcontaminants
_version_ 1782029703766343680