A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations
We propose and analyze discretization methods for solving finite systems of nonlinearly coupled Schrödinger equations, which arise as an asymptotic limit of the three-dimensional Gross-Pitaevskii equation with strongly anisotropic potential. A pseudo-spectral method with Hermite basis functions comb...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15396746_v5_n2_p299_Weishaupl |
Aporte de: |
id |
todo:paper_15396746_v5_n2_p299_Weishaupl |
---|---|
record_format |
dspace |
spelling |
todo:paper_15396746_v5_n2_p299_Weishaupl2023-10-03T16:22:53Z A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations Weishäupl, R.M. Schmeiser, C. Markowich, P.A. Borgna, J.P. Fourier expansion Gross-Pitaevskii equation Hermite polynomials Spectral decomposition We propose and analyze discretization methods for solving finite systems of nonlinearly coupled Schrödinger equations, which arise as an asymptotic limit of the three-dimensional Gross-Pitaevskii equation with strongly anisotropic potential. A pseudo-spectral method with Hermite basis functions combined with a Crank-Nicolson type method is introduced. Numerical experiments are presented, including a comparison with an alternative discretization approach. © 2007 International Press. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15396746_v5_n2_p299_Weishaupl |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Fourier expansion Gross-Pitaevskii equation Hermite polynomials Spectral decomposition |
spellingShingle |
Fourier expansion Gross-Pitaevskii equation Hermite polynomials Spectral decomposition Weishäupl, R.M. Schmeiser, C. Markowich, P.A. Borgna, J.P. A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations |
topic_facet |
Fourier expansion Gross-Pitaevskii equation Hermite polynomials Spectral decomposition |
description |
We propose and analyze discretization methods for solving finite systems of nonlinearly coupled Schrödinger equations, which arise as an asymptotic limit of the three-dimensional Gross-Pitaevskii equation with strongly anisotropic potential. A pseudo-spectral method with Hermite basis functions combined with a Crank-Nicolson type method is introduced. Numerical experiments are presented, including a comparison with an alternative discretization approach. © 2007 International Press. |
format |
JOUR |
author |
Weishäupl, R.M. Schmeiser, C. Markowich, P.A. Borgna, J.P. |
author_facet |
Weishäupl, R.M. Schmeiser, C. Markowich, P.A. Borgna, J.P. |
author_sort |
Weishäupl, R.M. |
title |
A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations |
title_short |
A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations |
title_full |
A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations |
title_fullStr |
A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations |
title_full_unstemmed |
A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations |
title_sort |
hermite pseudo-spectral method for solving systems of gross-pitaevskii equations |
url |
http://hdl.handle.net/20.500.12110/paper_15396746_v5_n2_p299_Weishaupl |
work_keys_str_mv |
AT weishauplrm ahermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations AT schmeiserc ahermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations AT markowichpa ahermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations AT borgnajp ahermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations AT weishauplrm hermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations AT schmeiserc hermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations AT markowichpa hermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations AT borgnajp hermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations |
_version_ |
1807322838758064128 |