A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations

We propose and analyze discretization methods for solving finite systems of nonlinearly coupled Schrödinger equations, which arise as an asymptotic limit of the three-dimensional Gross-Pitaevskii equation with strongly anisotropic potential. A pseudo-spectral method with Hermite basis functions comb...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Weishäupl, R.M., Schmeiser, C., Markowich, P.A., Borgna, J.P.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15396746_v5_n2_p299_Weishaupl
Aporte de:
id todo:paper_15396746_v5_n2_p299_Weishaupl
record_format dspace
spelling todo:paper_15396746_v5_n2_p299_Weishaupl2023-10-03T16:22:53Z A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations Weishäupl, R.M. Schmeiser, C. Markowich, P.A. Borgna, J.P. Fourier expansion Gross-Pitaevskii equation Hermite polynomials Spectral decomposition We propose and analyze discretization methods for solving finite systems of nonlinearly coupled Schrödinger equations, which arise as an asymptotic limit of the three-dimensional Gross-Pitaevskii equation with strongly anisotropic potential. A pseudo-spectral method with Hermite basis functions combined with a Crank-Nicolson type method is introduced. Numerical experiments are presented, including a comparison with an alternative discretization approach. © 2007 International Press. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15396746_v5_n2_p299_Weishaupl
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fourier expansion
Gross-Pitaevskii equation
Hermite polynomials
Spectral decomposition
spellingShingle Fourier expansion
Gross-Pitaevskii equation
Hermite polynomials
Spectral decomposition
Weishäupl, R.M.
Schmeiser, C.
Markowich, P.A.
Borgna, J.P.
A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations
topic_facet Fourier expansion
Gross-Pitaevskii equation
Hermite polynomials
Spectral decomposition
description We propose and analyze discretization methods for solving finite systems of nonlinearly coupled Schrödinger equations, which arise as an asymptotic limit of the three-dimensional Gross-Pitaevskii equation with strongly anisotropic potential. A pseudo-spectral method with Hermite basis functions combined with a Crank-Nicolson type method is introduced. Numerical experiments are presented, including a comparison with an alternative discretization approach. © 2007 International Press.
format JOUR
author Weishäupl, R.M.
Schmeiser, C.
Markowich, P.A.
Borgna, J.P.
author_facet Weishäupl, R.M.
Schmeiser, C.
Markowich, P.A.
Borgna, J.P.
author_sort Weishäupl, R.M.
title A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations
title_short A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations
title_full A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations
title_fullStr A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations
title_full_unstemmed A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations
title_sort hermite pseudo-spectral method for solving systems of gross-pitaevskii equations
url http://hdl.handle.net/20.500.12110/paper_15396746_v5_n2_p299_Weishaupl
work_keys_str_mv AT weishauplrm ahermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations
AT schmeiserc ahermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations
AT markowichpa ahermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations
AT borgnajp ahermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations
AT weishauplrm hermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations
AT schmeiserc hermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations
AT markowichpa hermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations
AT borgnajp hermitepseudospectralmethodforsolvingsystemsofgrosspitaevskiiequations
_version_ 1807322838758064128