Kelvin-Helmholtz versus Hall magnetoshear instability in astrophysical flows

We study the stability of shear flows in a fully ionized plasma. Kelvin-Helmholtz is a well-known macroscopic and ideal shear-driven instability. In sufficiently low-density plasmas, also the microscopic Hall magnetoshear instability can take place. We performed three-dimensional simulations of the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gómez, D.O., Bejarano, C., Mininni, P.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15393755_v89_n5_p_Gomez
Aporte de:
Descripción
Sumario:We study the stability of shear flows in a fully ionized plasma. Kelvin-Helmholtz is a well-known macroscopic and ideal shear-driven instability. In sufficiently low-density plasmas, also the microscopic Hall magnetoshear instability can take place. We performed three-dimensional simulations of the Hall-magnetohydrodynamic equations where these two instabilities are present, and carried out a comparative study. We find that when the shear flow is so intense that its vorticity surpasses the ion-cyclotron frequency of the plasma, the Hall magnetoshear instability is not only non-negligible, but it actually displays growth rates larger than those of the Kelvin-Helmholtz instability. © 2014 American Physical Society.