Semiclassical description of wave packet revival

We test the ability of semiclassical theory to describe quantitatively the revival of quantum wave packets-a long time phenomena-in the one dimensional quartic oscillator (a Kerr type Hamiltonian). Two semiclassical theories are considered: time-dependent WKB and Van Vleck propagation. We show that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Toscano, F., Vallejos, R.O., Wisniacki, D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15393755_v80_n4_p_Toscano
Aporte de:
id todo:paper_15393755_v80_n4_p_Toscano
record_format dspace
spelling todo:paper_15393755_v80_n4_p_Toscano2023-10-03T16:22:31Z Semiclassical description of wave packet revival Toscano, F. Vallejos, R.O. Wisniacki, D. Autocorrelation functions Quantum wave packets Semiclassical theories Time-dependent Wave packet revivals Regression analysis Wave functions Wave packets Waves Automobile exhibitions We test the ability of semiclassical theory to describe quantitatively the revival of quantum wave packets-a long time phenomena-in the one dimensional quartic oscillator (a Kerr type Hamiltonian). Two semiclassical theories are considered: time-dependent WKB and Van Vleck propagation. We show that both approaches describe with impressive accuracy the autocorrelation function and wave function up to times longer than the revival time. Moreover, in the Van Vleck approach, we can show analytically that the range of agreement extends to arbitrary long times. © 2009 The American Physical Society. Fil:Toscano, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Vallejos, R.O. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wisniacki, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15393755_v80_n4_p_Toscano
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Autocorrelation functions
Quantum wave packets
Semiclassical theories
Time-dependent
Wave packet revivals
Regression analysis
Wave functions
Wave packets
Waves
Automobile exhibitions
spellingShingle Autocorrelation functions
Quantum wave packets
Semiclassical theories
Time-dependent
Wave packet revivals
Regression analysis
Wave functions
Wave packets
Waves
Automobile exhibitions
Toscano, F.
Vallejos, R.O.
Wisniacki, D.
Semiclassical description of wave packet revival
topic_facet Autocorrelation functions
Quantum wave packets
Semiclassical theories
Time-dependent
Wave packet revivals
Regression analysis
Wave functions
Wave packets
Waves
Automobile exhibitions
description We test the ability of semiclassical theory to describe quantitatively the revival of quantum wave packets-a long time phenomena-in the one dimensional quartic oscillator (a Kerr type Hamiltonian). Two semiclassical theories are considered: time-dependent WKB and Van Vleck propagation. We show that both approaches describe with impressive accuracy the autocorrelation function and wave function up to times longer than the revival time. Moreover, in the Van Vleck approach, we can show analytically that the range of agreement extends to arbitrary long times. © 2009 The American Physical Society.
format JOUR
author Toscano, F.
Vallejos, R.O.
Wisniacki, D.
author_facet Toscano, F.
Vallejos, R.O.
Wisniacki, D.
author_sort Toscano, F.
title Semiclassical description of wave packet revival
title_short Semiclassical description of wave packet revival
title_full Semiclassical description of wave packet revival
title_fullStr Semiclassical description of wave packet revival
title_full_unstemmed Semiclassical description of wave packet revival
title_sort semiclassical description of wave packet revival
url http://hdl.handle.net/20.500.12110/paper_15393755_v80_n4_p_Toscano
work_keys_str_mv AT toscanof semiclassicaldescriptionofwavepacketrevival
AT vallejosro semiclassicaldescriptionofwavepacketrevival
AT wisniackid semiclassicaldescriptionofwavepacketrevival
_version_ 1807322303095111680