Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function
A theoretical framework for analyzing stochastic data from single-particle tracking in viscoelastic materials and under the influence of a trapping potential is presented. Starting from a generalized Langevin equation, we found analytical expressions for the two-time dynamics of a particle subjected...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15393755_v80_n2_p_Desposito |
Aporte de: |
Sumario: | A theoretical framework for analyzing stochastic data from single-particle tracking in viscoelastic materials and under the influence of a trapping potential is presented. Starting from a generalized Langevin equation, we found analytical expressions for the two-time dynamics of a particle subjected to a harmonic potential. The mean-square displacement and the velocity autocorrelation function of the diffusing particle are given in terms of the time lag. In particular, we investigate the subdiffusive case. Using a power-law memory kernel, exact expressions for the mean-square displacement and the velocity autocorrelation function are obtained in terms of Mittag-Leffler functions and their derivatives. The behaviors for short-, intermediate-, and long-time lags are investigated in terms of the involved parameters. Finally, the validity of usual approximations is examined. © 2009 The American Physical Society. |
---|