Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function

A theoretical framework for analyzing stochastic data from single-particle tracking in viscoelastic materials and under the influence of a trapping potential is presented. Starting from a generalized Langevin equation, we found analytical expressions for the two-time dynamics of a particle subjected...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Despósito, M.A., Viñales, A.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15393755_v80_n2_p_Desposito
Aporte de:
id todo:paper_15393755_v80_n2_p_Desposito
record_format dspace
spelling todo:paper_15393755_v80_n2_p_Desposito2023-10-03T16:22:28Z Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function Despósito, M.A. Viñales, A.D. Analytical expressions Diffusing particles Generalized Langevin equation Harmonic potential Mean-square displacement Memory kernels Mittag-Leffler functions Power-law Single-particle Stochastic data Subdiffusive behavior Theoretical framework Time dynamic Time lag Trapping potential Velocity autocorrelation functions Visco-elastic material Correlation detectors Kinetic theory of gases Regression analysis A theoretical framework for analyzing stochastic data from single-particle tracking in viscoelastic materials and under the influence of a trapping potential is presented. Starting from a generalized Langevin equation, we found analytical expressions for the two-time dynamics of a particle subjected to a harmonic potential. The mean-square displacement and the velocity autocorrelation function of the diffusing particle are given in terms of the time lag. In particular, we investigate the subdiffusive case. Using a power-law memory kernel, exact expressions for the mean-square displacement and the velocity autocorrelation function are obtained in terms of Mittag-Leffler functions and their derivatives. The behaviors for short-, intermediate-, and long-time lags are investigated in terms of the involved parameters. Finally, the validity of usual approximations is examined. © 2009 The American Physical Society. Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Viñales, A.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15393755_v80_n2_p_Desposito
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Analytical expressions
Diffusing particles
Generalized Langevin equation
Harmonic potential
Mean-square displacement
Memory kernels
Mittag-Leffler functions
Power-law
Single-particle
Stochastic data
Subdiffusive behavior
Theoretical framework
Time dynamic
Time lag
Trapping potential
Velocity autocorrelation functions
Visco-elastic material
Correlation detectors
Kinetic theory of gases
Regression analysis
spellingShingle Analytical expressions
Diffusing particles
Generalized Langevin equation
Harmonic potential
Mean-square displacement
Memory kernels
Mittag-Leffler functions
Power-law
Single-particle
Stochastic data
Subdiffusive behavior
Theoretical framework
Time dynamic
Time lag
Trapping potential
Velocity autocorrelation functions
Visco-elastic material
Correlation detectors
Kinetic theory of gases
Regression analysis
Despósito, M.A.
Viñales, A.D.
Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function
topic_facet Analytical expressions
Diffusing particles
Generalized Langevin equation
Harmonic potential
Mean-square displacement
Memory kernels
Mittag-Leffler functions
Power-law
Single-particle
Stochastic data
Subdiffusive behavior
Theoretical framework
Time dynamic
Time lag
Trapping potential
Velocity autocorrelation functions
Visco-elastic material
Correlation detectors
Kinetic theory of gases
Regression analysis
description A theoretical framework for analyzing stochastic data from single-particle tracking in viscoelastic materials and under the influence of a trapping potential is presented. Starting from a generalized Langevin equation, we found analytical expressions for the two-time dynamics of a particle subjected to a harmonic potential. The mean-square displacement and the velocity autocorrelation function of the diffusing particle are given in terms of the time lag. In particular, we investigate the subdiffusive case. Using a power-law memory kernel, exact expressions for the mean-square displacement and the velocity autocorrelation function are obtained in terms of Mittag-Leffler functions and their derivatives. The behaviors for short-, intermediate-, and long-time lags are investigated in terms of the involved parameters. Finally, the validity of usual approximations is examined. © 2009 The American Physical Society.
format JOUR
author Despósito, M.A.
Viñales, A.D.
author_facet Despósito, M.A.
Viñales, A.D.
author_sort Despósito, M.A.
title Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function
title_short Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function
title_full Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function
title_fullStr Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function
title_full_unstemmed Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function
title_sort subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function
url http://hdl.handle.net/20.500.12110/paper_15393755_v80_n2_p_Desposito
work_keys_str_mv AT despositoma subdiffusivebehaviorinatrappingpotentialmeansquaredisplacementandvelocityautocorrelationfunction
AT vinalesad subdiffusivebehaviorinatrappingpotentialmeansquaredisplacementandvelocityautocorrelationfunction
_version_ 1807315289902153728