Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function
A theoretical framework for analyzing stochastic data from single-particle tracking in viscoelastic materials and under the influence of a trapping potential is presented. Starting from a generalized Langevin equation, we found analytical expressions for the two-time dynamics of a particle subjected...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15393755_v80_n2_p_Desposito |
Aporte de: |
id |
todo:paper_15393755_v80_n2_p_Desposito |
---|---|
record_format |
dspace |
spelling |
todo:paper_15393755_v80_n2_p_Desposito2023-10-03T16:22:28Z Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function Despósito, M.A. Viñales, A.D. Analytical expressions Diffusing particles Generalized Langevin equation Harmonic potential Mean-square displacement Memory kernels Mittag-Leffler functions Power-law Single-particle Stochastic data Subdiffusive behavior Theoretical framework Time dynamic Time lag Trapping potential Velocity autocorrelation functions Visco-elastic material Correlation detectors Kinetic theory of gases Regression analysis A theoretical framework for analyzing stochastic data from single-particle tracking in viscoelastic materials and under the influence of a trapping potential is presented. Starting from a generalized Langevin equation, we found analytical expressions for the two-time dynamics of a particle subjected to a harmonic potential. The mean-square displacement and the velocity autocorrelation function of the diffusing particle are given in terms of the time lag. In particular, we investigate the subdiffusive case. Using a power-law memory kernel, exact expressions for the mean-square displacement and the velocity autocorrelation function are obtained in terms of Mittag-Leffler functions and their derivatives. The behaviors for short-, intermediate-, and long-time lags are investigated in terms of the involved parameters. Finally, the validity of usual approximations is examined. © 2009 The American Physical Society. Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Viñales, A.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15393755_v80_n2_p_Desposito |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Analytical expressions Diffusing particles Generalized Langevin equation Harmonic potential Mean-square displacement Memory kernels Mittag-Leffler functions Power-law Single-particle Stochastic data Subdiffusive behavior Theoretical framework Time dynamic Time lag Trapping potential Velocity autocorrelation functions Visco-elastic material Correlation detectors Kinetic theory of gases Regression analysis |
spellingShingle |
Analytical expressions Diffusing particles Generalized Langevin equation Harmonic potential Mean-square displacement Memory kernels Mittag-Leffler functions Power-law Single-particle Stochastic data Subdiffusive behavior Theoretical framework Time dynamic Time lag Trapping potential Velocity autocorrelation functions Visco-elastic material Correlation detectors Kinetic theory of gases Regression analysis Despósito, M.A. Viñales, A.D. Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function |
topic_facet |
Analytical expressions Diffusing particles Generalized Langevin equation Harmonic potential Mean-square displacement Memory kernels Mittag-Leffler functions Power-law Single-particle Stochastic data Subdiffusive behavior Theoretical framework Time dynamic Time lag Trapping potential Velocity autocorrelation functions Visco-elastic material Correlation detectors Kinetic theory of gases Regression analysis |
description |
A theoretical framework for analyzing stochastic data from single-particle tracking in viscoelastic materials and under the influence of a trapping potential is presented. Starting from a generalized Langevin equation, we found analytical expressions for the two-time dynamics of a particle subjected to a harmonic potential. The mean-square displacement and the velocity autocorrelation function of the diffusing particle are given in terms of the time lag. In particular, we investigate the subdiffusive case. Using a power-law memory kernel, exact expressions for the mean-square displacement and the velocity autocorrelation function are obtained in terms of Mittag-Leffler functions and their derivatives. The behaviors for short-, intermediate-, and long-time lags are investigated in terms of the involved parameters. Finally, the validity of usual approximations is examined. © 2009 The American Physical Society. |
format |
JOUR |
author |
Despósito, M.A. Viñales, A.D. |
author_facet |
Despósito, M.A. Viñales, A.D. |
author_sort |
Despósito, M.A. |
title |
Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function |
title_short |
Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function |
title_full |
Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function |
title_fullStr |
Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function |
title_full_unstemmed |
Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function |
title_sort |
subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function |
url |
http://hdl.handle.net/20.500.12110/paper_15393755_v80_n2_p_Desposito |
work_keys_str_mv |
AT despositoma subdiffusivebehaviorinatrappingpotentialmeansquaredisplacementandvelocityautocorrelationfunction AT vinalesad subdiffusivebehaviorinatrappingpotentialmeansquaredisplacementandvelocityautocorrelationfunction |
_version_ |
1807315289902153728 |