A quasilinear parabolic singular perturbation problem
We study the following singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory: div F(∇uε)-∂tuε = βε(uε), where uε ≥ 0, βε(s) = (1/ε)β(s/ε), ε > 0, β is Lipschitz continuous, supp β = [0, 1] and β > 0 in (0, 1). We obtain uniform es...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_14639963_v10_n4_p447_Lederman |
Aporte de: |
id |
todo:paper_14639963_v10_n4_p447_Lederman |
---|---|
record_format |
dspace |
spelling |
todo:paper_14639963_v10_n4_p447_Lederman2023-10-03T16:17:04Z A quasilinear parabolic singular perturbation problem Lederman, C. Oelz, D. Combustion Free boundary problem Quasilinear parabolic operator Singular perturbation problem We study the following singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory: div F(∇uε)-∂tuε = βε(uε), where uε ≥ 0, βε(s) = (1/ε)β(s/ε), ε > 0, β is Lipschitz continuous, supp β = [0, 1] and β > 0 in (0, 1). We obtain uniform estimates, we pass to the limit (ε → 0) and we show that, under suitable assumptions, the limit function u is a solution to the free boundary problem div F(∇u) - ∂tu = 0 in {u > 0}, uυ = α(υ, M) on ∂{u > 0}, in a pointwise sense and in a viscosity sense. Here uυ denotes the derivative of u with respect to the inward unit spatial normal υ to the free boundary ∂{u > 0}, M = ∫ β(s) ds, α(υ, M) := Φv -1 (M) and Φv(α) := - A(αυ) +αυ · F(αυ), where A(p) is such that F(p) = ∇A(p) with A(0) = 0. Some of the results obtained are new even when the operator under consideration is linear. © European Mathematical Society 2008. Fil:Lederman, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_14639963_v10_n4_p447_Lederman |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Combustion Free boundary problem Quasilinear parabolic operator Singular perturbation problem |
spellingShingle |
Combustion Free boundary problem Quasilinear parabolic operator Singular perturbation problem Lederman, C. Oelz, D. A quasilinear parabolic singular perturbation problem |
topic_facet |
Combustion Free boundary problem Quasilinear parabolic operator Singular perturbation problem |
description |
We study the following singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory: div F(∇uε)-∂tuε = βε(uε), where uε ≥ 0, βε(s) = (1/ε)β(s/ε), ε > 0, β is Lipschitz continuous, supp β = [0, 1] and β > 0 in (0, 1). We obtain uniform estimates, we pass to the limit (ε → 0) and we show that, under suitable assumptions, the limit function u is a solution to the free boundary problem div F(∇u) - ∂tu = 0 in {u > 0}, uυ = α(υ, M) on ∂{u > 0}, in a pointwise sense and in a viscosity sense. Here uυ denotes the derivative of u with respect to the inward unit spatial normal υ to the free boundary ∂{u > 0}, M = ∫ β(s) ds, α(υ, M) := Φv -1 (M) and Φv(α) := - A(αυ) +αυ · F(αυ), where A(p) is such that F(p) = ∇A(p) with A(0) = 0. Some of the results obtained are new even when the operator under consideration is linear. © European Mathematical Society 2008. |
format |
JOUR |
author |
Lederman, C. Oelz, D. |
author_facet |
Lederman, C. Oelz, D. |
author_sort |
Lederman, C. |
title |
A quasilinear parabolic singular perturbation problem |
title_short |
A quasilinear parabolic singular perturbation problem |
title_full |
A quasilinear parabolic singular perturbation problem |
title_fullStr |
A quasilinear parabolic singular perturbation problem |
title_full_unstemmed |
A quasilinear parabolic singular perturbation problem |
title_sort |
quasilinear parabolic singular perturbation problem |
url |
http://hdl.handle.net/20.500.12110/paper_14639963_v10_n4_p447_Lederman |
work_keys_str_mv |
AT ledermanc aquasilinearparabolicsingularperturbationproblem AT oelzd aquasilinearparabolicsingularperturbationproblem AT ledermanc quasilinearparabolicsingularperturbationproblem AT oelzd quasilinearparabolicsingularperturbationproblem |
_version_ |
1807314790484279296 |