A quasilinear parabolic singular perturbation problem

We study the following singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory: div F(∇uε)-∂tuε = βε(uε), where uε ≥ 0, βε(s) = (1/ε)β(s/ε), ε > 0, β is Lipschitz continuous, supp β = [0, 1] and β > 0 in (0, 1). We obtain uniform es...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lederman, C., Oelz, D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_14639963_v10_n4_p447_Lederman
Aporte de:
id todo:paper_14639963_v10_n4_p447_Lederman
record_format dspace
spelling todo:paper_14639963_v10_n4_p447_Lederman2023-10-03T16:17:04Z A quasilinear parabolic singular perturbation problem Lederman, C. Oelz, D. Combustion Free boundary problem Quasilinear parabolic operator Singular perturbation problem We study the following singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory: div F(∇uε)-∂tuε = βε(uε), where uε ≥ 0, βε(s) = (1/ε)β(s/ε), ε > 0, β is Lipschitz continuous, supp β = [0, 1] and β > 0 in (0, 1). We obtain uniform estimates, we pass to the limit (ε → 0) and we show that, under suitable assumptions, the limit function u is a solution to the free boundary problem div F(∇u) - ∂tu = 0 in {u > 0}, uυ = α(υ, M) on ∂{u > 0}, in a pointwise sense and in a viscosity sense. Here uυ denotes the derivative of u with respect to the inward unit spatial normal υ to the free boundary ∂{u > 0}, M = ∫ β(s) ds, α(υ, M) := Φv -1 (M) and Φv(α) := - A(αυ) +αυ · F(αυ), where A(p) is such that F(p) = ∇A(p) with A(0) = 0. Some of the results obtained are new even when the operator under consideration is linear. © European Mathematical Society 2008. Fil:Lederman, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_14639963_v10_n4_p447_Lederman
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Combustion
Free boundary problem
Quasilinear parabolic operator
Singular perturbation problem
spellingShingle Combustion
Free boundary problem
Quasilinear parabolic operator
Singular perturbation problem
Lederman, C.
Oelz, D.
A quasilinear parabolic singular perturbation problem
topic_facet Combustion
Free boundary problem
Quasilinear parabolic operator
Singular perturbation problem
description We study the following singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory: div F(∇uε)-∂tuε = βε(uε), where uε ≥ 0, βε(s) = (1/ε)β(s/ε), ε > 0, β is Lipschitz continuous, supp β = [0, 1] and β > 0 in (0, 1). We obtain uniform estimates, we pass to the limit (ε → 0) and we show that, under suitable assumptions, the limit function u is a solution to the free boundary problem div F(∇u) - ∂tu = 0 in {u > 0}, uυ = α(υ, M) on ∂{u > 0}, in a pointwise sense and in a viscosity sense. Here uυ denotes the derivative of u with respect to the inward unit spatial normal υ to the free boundary ∂{u > 0}, M = ∫ β(s) ds, α(υ, M) := Φv -1 (M) and Φv(α) := - A(αυ) +αυ · F(αυ), where A(p) is such that F(p) = ∇A(p) with A(0) = 0. Some of the results obtained are new even when the operator under consideration is linear. © European Mathematical Society 2008.
format JOUR
author Lederman, C.
Oelz, D.
author_facet Lederman, C.
Oelz, D.
author_sort Lederman, C.
title A quasilinear parabolic singular perturbation problem
title_short A quasilinear parabolic singular perturbation problem
title_full A quasilinear parabolic singular perturbation problem
title_fullStr A quasilinear parabolic singular perturbation problem
title_full_unstemmed A quasilinear parabolic singular perturbation problem
title_sort quasilinear parabolic singular perturbation problem
url http://hdl.handle.net/20.500.12110/paper_14639963_v10_n4_p447_Lederman
work_keys_str_mv AT ledermanc aquasilinearparabolicsingularperturbationproblem
AT oelzd aquasilinearparabolicsingularperturbationproblem
AT ledermanc quasilinearparabolicsingularperturbationproblem
AT oelzd quasilinearparabolicsingularperturbationproblem
_version_ 1807314790484279296