Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu<inf>A</inf> Sites of Cytochrome c Oxidase

The Cu<inf>A</inf> site of cytochromec oxidase is a redox hub that participates in rapid electron transfer at low driving forces with two redox cofactors in nearly perpendicular orientations. Spectroscopic and electrochemical characterizations performed on first and second-sphere mutants...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zitare, U., Alvarez-Paggi, D., Morgada, M.N., Abriata, L.A., Vila, A.J., Murgida, D.H.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_14337851_v54_n33_p9555_Zitare
Aporte de:
id todo:paper_14337851_v54_n33_p9555_Zitare
record_format dspace
spelling todo:paper_14337851_v54_n33_p9555_Zitare2023-10-03T16:14:12Z Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu<inf>A</inf> Sites of Cytochrome c Oxidase Zitare, U. Alvarez-Paggi, D. Morgada, M.N. Abriata, L.A. Vila, A.J. Murgida, D.H. cytochromec oxidase electrochemistry electron transfer electronic structures enzymes Electrochemistry Electron transitions Electronic structure Enzymes Molecular orbitals Redox reactions Cytochrome c oxidase Electrochemical characterizations Electron transfer Electron transfer pathways Perpendicular orientation Protein species Redox cofactors Reversible switching Electrons copper cytochrome b cytochrome ba3 cytochrome c oxidase chemistry electron electron transport enzymology oxidation reduction reaction Thermus thermophilus Copper Cytochrome b Group Electron Transport Electron Transport Complex IV Electrons Oxidation-Reduction Thermus thermophilus The Cu<inf>A</inf> site of cytochromec oxidase is a redox hub that participates in rapid electron transfer at low driving forces with two redox cofactors in nearly perpendicular orientations. Spectroscopic and electrochemical characterizations performed on first and second-sphere mutants have allowed us to experimentally detect the reversible switching between two alternative electronic states that confer different directionalities to the redox reaction. Specifically, the M160H variant of a native Cu<inf>A</inf> shows a reversible pH transition that allows to functionally probe both states in the same protein species. Alternation between states exerts a dramatic impact on the kinetic redox parameters, thereby suggesting this effect as the mechanism underlying the efficiency and directionality of Cu<inf>A</inf> electron transfer invivo. These findings may also prove useful for the development of molecular electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_14337851_v54_n33_p9555_Zitare
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic cytochromec oxidase
electrochemistry
electron transfer
electronic structures
enzymes
Electrochemistry
Electron transitions
Electronic structure
Enzymes
Molecular orbitals
Redox reactions
Cytochrome c oxidase
Electrochemical characterizations
Electron transfer
Electron transfer pathways
Perpendicular orientation
Protein species
Redox cofactors
Reversible switching
Electrons
copper
cytochrome b
cytochrome ba3
cytochrome c oxidase
chemistry
electron
electron transport
enzymology
oxidation reduction reaction
Thermus thermophilus
Copper
Cytochrome b Group
Electron Transport
Electron Transport Complex IV
Electrons
Oxidation-Reduction
Thermus thermophilus
spellingShingle cytochromec oxidase
electrochemistry
electron transfer
electronic structures
enzymes
Electrochemistry
Electron transitions
Electronic structure
Enzymes
Molecular orbitals
Redox reactions
Cytochrome c oxidase
Electrochemical characterizations
Electron transfer
Electron transfer pathways
Perpendicular orientation
Protein species
Redox cofactors
Reversible switching
Electrons
copper
cytochrome b
cytochrome ba3
cytochrome c oxidase
chemistry
electron
electron transport
enzymology
oxidation reduction reaction
Thermus thermophilus
Copper
Cytochrome b Group
Electron Transport
Electron Transport Complex IV
Electrons
Oxidation-Reduction
Thermus thermophilus
Zitare, U.
Alvarez-Paggi, D.
Morgada, M.N.
Abriata, L.A.
Vila, A.J.
Murgida, D.H.
Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu<inf>A</inf> Sites of Cytochrome c Oxidase
topic_facet cytochromec oxidase
electrochemistry
electron transfer
electronic structures
enzymes
Electrochemistry
Electron transitions
Electronic structure
Enzymes
Molecular orbitals
Redox reactions
Cytochrome c oxidase
Electrochemical characterizations
Electron transfer
Electron transfer pathways
Perpendicular orientation
Protein species
Redox cofactors
Reversible switching
Electrons
copper
cytochrome b
cytochrome ba3
cytochrome c oxidase
chemistry
electron
electron transport
enzymology
oxidation reduction reaction
Thermus thermophilus
Copper
Cytochrome b Group
Electron Transport
Electron Transport Complex IV
Electrons
Oxidation-Reduction
Thermus thermophilus
description The Cu<inf>A</inf> site of cytochromec oxidase is a redox hub that participates in rapid electron transfer at low driving forces with two redox cofactors in nearly perpendicular orientations. Spectroscopic and electrochemical characterizations performed on first and second-sphere mutants have allowed us to experimentally detect the reversible switching between two alternative electronic states that confer different directionalities to the redox reaction. Specifically, the M160H variant of a native Cu<inf>A</inf> shows a reversible pH transition that allows to functionally probe both states in the same protein species. Alternation between states exerts a dramatic impact on the kinetic redox parameters, thereby suggesting this effect as the mechanism underlying the efficiency and directionality of Cu<inf>A</inf> electron transfer invivo. These findings may also prove useful for the development of molecular electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
format JOUR
author Zitare, U.
Alvarez-Paggi, D.
Morgada, M.N.
Abriata, L.A.
Vila, A.J.
Murgida, D.H.
author_facet Zitare, U.
Alvarez-Paggi, D.
Morgada, M.N.
Abriata, L.A.
Vila, A.J.
Murgida, D.H.
author_sort Zitare, U.
title Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu<inf>A</inf> Sites of Cytochrome c Oxidase
title_short Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu<inf>A</inf> Sites of Cytochrome c Oxidase
title_full Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu<inf>A</inf> Sites of Cytochrome c Oxidase
title_fullStr Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu<inf>A</inf> Sites of Cytochrome c Oxidase
title_full_unstemmed Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu<inf>A</inf> Sites of Cytochrome c Oxidase
title_sort reversible switching of redox-active molecular orbitals and electron transfer pathways in cu<inf>a</inf> sites of cytochrome c oxidase
url http://hdl.handle.net/20.500.12110/paper_14337851_v54_n33_p9555_Zitare
work_keys_str_mv AT zitareu reversibleswitchingofredoxactivemolecularorbitalsandelectrontransferpathwaysincuinfainfsitesofcytochromecoxidase
AT alvarezpaggid reversibleswitchingofredoxactivemolecularorbitalsandelectrontransferpathwaysincuinfainfsitesofcytochromecoxidase
AT morgadamn reversibleswitchingofredoxactivemolecularorbitalsandelectrontransferpathwaysincuinfainfsitesofcytochromecoxidase
AT abriatala reversibleswitchingofredoxactivemolecularorbitalsandelectrontransferpathwaysincuinfainfsitesofcytochromecoxidase
AT vilaaj reversibleswitchingofredoxactivemolecularorbitalsandelectrontransferpathwaysincuinfainfsitesofcytochromecoxidase
AT murgidadh reversibleswitchingofredoxactivemolecularorbitalsandelectrontransferpathwaysincuinfainfsitesofcytochromecoxidase
_version_ 1782025462072999936