The Odd story of α′-corrections
The α′-deformed frame-like Double Field Theory (DFT) is a T-duality and gauge invariant extension of DFT in which generalized Green-Schwarz transformations provide a gauge principle that fixes the higher-derivative corrections. It includes all the first order α′-corrections of the bosonic and hetero...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_11266708_v2017_n4_p_Baron |
Aporte de: |
id |
todo:paper_11266708_v2017_n4_p_Baron |
---|---|
record_format |
dspace |
spelling |
todo:paper_11266708_v2017_n4_p_Baron2023-10-03T16:07:35Z The Odd story of α′-corrections Baron, W.H. Fernández-Melgarejo, J.J. Marqués, D. Nuñez, C.A. Flux compactifications Supergravity Models Superstrings and Heterotic Strings The α′-deformed frame-like Double Field Theory (DFT) is a T-duality and gauge invariant extension of DFT in which generalized Green-Schwarz transformations provide a gauge principle that fixes the higher-derivative corrections. It includes all the first order α′-corrections of the bosonic and heterotic string low energy effective actions and of the Hohm-Siegel-Zwiebach α′-geometry. Here we gauge this theory and parameterize it in terms of a frame, a two-form, a dilaton, gauge vectors and scalar fields. This leads to a unified framework that extends the previous construction by including all duality constrained interactions in generic (gauged/super)gravity effective field theories in arbitrary number of dimensions, to first order in α′. © 2017, The Author(s). Fil:Marqués, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_11266708_v2017_n4_p_Baron |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Flux compactifications Supergravity Models Superstrings and Heterotic Strings |
spellingShingle |
Flux compactifications Supergravity Models Superstrings and Heterotic Strings Baron, W.H. Fernández-Melgarejo, J.J. Marqués, D. Nuñez, C.A. The Odd story of α′-corrections |
topic_facet |
Flux compactifications Supergravity Models Superstrings and Heterotic Strings |
description |
The α′-deformed frame-like Double Field Theory (DFT) is a T-duality and gauge invariant extension of DFT in which generalized Green-Schwarz transformations provide a gauge principle that fixes the higher-derivative corrections. It includes all the first order α′-corrections of the bosonic and heterotic string low energy effective actions and of the Hohm-Siegel-Zwiebach α′-geometry. Here we gauge this theory and parameterize it in terms of a frame, a two-form, a dilaton, gauge vectors and scalar fields. This leads to a unified framework that extends the previous construction by including all duality constrained interactions in generic (gauged/super)gravity effective field theories in arbitrary number of dimensions, to first order in α′. © 2017, The Author(s). |
format |
JOUR |
author |
Baron, W.H. Fernández-Melgarejo, J.J. Marqués, D. Nuñez, C.A. |
author_facet |
Baron, W.H. Fernández-Melgarejo, J.J. Marqués, D. Nuñez, C.A. |
author_sort |
Baron, W.H. |
title |
The Odd story of α′-corrections |
title_short |
The Odd story of α′-corrections |
title_full |
The Odd story of α′-corrections |
title_fullStr |
The Odd story of α′-corrections |
title_full_unstemmed |
The Odd story of α′-corrections |
title_sort |
odd story of α′-corrections |
url |
http://hdl.handle.net/20.500.12110/paper_11266708_v2017_n4_p_Baron |
work_keys_str_mv |
AT baronwh theoddstoryofacorrections AT fernandezmelgarejojj theoddstoryofacorrections AT marquesd theoddstoryofacorrections AT nunezca theoddstoryofacorrections AT baronwh oddstoryofacorrections AT fernandezmelgarejojj oddstoryofacorrections AT marquesd oddstoryofacorrections AT nunezca oddstoryofacorrections |
_version_ |
1807316221280911360 |